首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epstein-Barr virus (EBV), an oncogenic herpesvirus of humans, displays selective tropism for B lymphocytes and epithelial cells. EBV tropism is thought to be determined in part by a unique host cell receptor termed CR2 (CD21). Although previous studies have demonstrated that CR2 mediates EBV binding to B cells, its role in initiating EBV infection and B-cell transformation is less certain. In the studies reported here, soluble recombinant CR2 was shown to cause substantial inhibition of EBV infection of B cells in vitro, indicating that CR2 binding initiates EBV infection. Soluble CR2 may represent a therapeutic agent for acute and chronic EBV infections in humans.  相似文献   

2.
The binding of a recombinant soluble form of the measles virus (MV) hemagglutinin (sH) to cells expressing hybrid CD46/CD4 proteins was compared to that of purified virus. For binding of both ligands, both CD46 external short consensus repeats I and II (SCR I and II) in the natural order were essential. The addition of SCR III and IV enhanced virus binding but inhibited sH binding. Accordingly, this lowered the ability of sH to compete with MV binding. Antihemagglutinin monoclonal antibodies selectively inhibited the binding of either sH or MV. Thus, sH and MV share a common binding site in SCR I and II but differ in their apparent avidity to CD46 under the influence of SCR III and IV.  相似文献   

3.
Early events of human B-lymphocyte infection by Epstein-Barr virus involve the virus binding to CD21, capping, and subsequent internalization of the virus-receptor complex. We show here that alpha interferon (IFN-alpha) inhibits the capping of Epstein-Barr virus-CD21 complexes. Synthetic peptides with the CD21 binding motif of IFN-alpha mimic IFN-alpha activity, suggesting that this effect may be mediated by IFN-alpha-CD21 interaction. Our findings demonstrate a novel and immediate mechanism of IFN-alpha action.  相似文献   

4.
The structure of CR2, the human C3d,g/EBV receptor (CR2/CD21) consists of 15 or 16 60-70 amino acid repeats called short consensus repeats (SCRs) followed by a transmembrane and a 34-amino acid intracytoplasmic domain. Functions of CR2 include binding the human complement component C3d,g when it is covalently attached to targets or cross-linked in the fluid phase. In addition, CR2 binds the Epstein-Barr virus (EBV) and mediates internalization of EBV and subsequent infection of cells. In order to explore functional roles of the repetitive extracytoplasmic SCR structure and the intracytoplasmic domain of CR2, we have created truncated CR2 (rCR2) mutants bearing serial deletions of extracytoplasmic SCRs and also the intracytoplasmic tail. We then stably transfected these rCR2 mutants into two cell lines, murine fibroblast L cells and human erythroleukemic K562 cells. Phenotypic analysis of these expressed mutants revealed that 1) The C3d,g- and EBV-binding sites are found in the two amino-terminal SCRs of CR2, 2) expression of SCRs 3 and 4 is further required for high affinity binding to soluble cross-linked C3d,g, 3) the intracytoplasmic domain of CR2 is not required for binding C3d,g or EBV but is necessary for internalization of cross-linked C3d,g as well as for EBV infection of cells, 4) monoclonal anti-CR2 antibodies with similar activities react with single widely separated epitopes, and 5) no functional roles can yet be clearly assigned to SCRs 5-15, as rCR2 mutants not containing these SCRs show no major differences from wild-type rCR2 in binding or internalizing cross-linked C3d,g or mediating EBV binding and infection.  相似文献   

5.
The binding of the Epstein-Barr virus glycoprotein gp350 by complement receptor type 2 (CR2) is critical for viral attachment to B lymphocytes. We set out to test hypotheses regarding the molecular nature of this interaction by developing an enzyme-linked immunosorbent assay (ELISA) for the efficient analysis of the gp350-CR2 interaction by utilizing wild-type and mutant forms of recombinant gp350 and also of the CR2 N-terminal domains SCR1 and SCR2 (designated CR2 SCR1-2). To delineate the CR2-binding site on gp350, we generated 17 gp350 single-site substitutions targeting an area of gp350 that has been broadly implicated in the binding of both CR2 and the major inhibitory anti-gp350 monoclonal antibody (MAb) 72A1. These site-directed mutations identified a novel negatively charged CR2-binding surface described by residues Glu-21, Asp-22, Glu-155, Asp-208, Glu-210, and Asp-296. We also identified gp350 amino acid residues involved in non-charge-dependent interactions with CR2, including Tyr-151, Ile-160, and Trp-162. These data were supported by experiments in which phycoerythrin-conjugated wild-type and mutant forms of gp350 were incubated with CR2-expressing K562 cells and binding was assessed by flow cytometry. The ELISA was further utilized to identify several positively charged residues (Arg-13, Arg-28, Arg-36, Lys-41, Lys-57, Lys-67, Arg-83, and Arg-89) within SCR1-2 of CR2 that are involved in the binding interaction with gp350. These experiments allowed a comparison of those CR2 residues that are important for binding gp350 to those that define the epitope for an effective inhibitory anti-CR2 MAb, 171 (Asn-11, Arg-13, Ser-32, Thr-34, Arg-36, and Tyr-64). The mutagenesis data were used to calculate a model of the CR2-gp350 complex using the soft-docking program HADDOCK.  相似文献   

6.
Complement receptor type 2 (CR2/CD21) is essential for the attachment of Epstein-Barr virus (EBV) to the surface of B-lymphocytes in an interaction mediated by the viral envelope glycoprotein gp350. The heavily glycosylated structure of EBV gp350 has recently been elucidated by x-ray crystallography, and the CR2 binding site on this protein has been characterized. To identify the corresponding gp350 binding site on CR2, we have undertaken a site-directed mutagenesis study targeting regions of CR2 that have previously been implicated in the binding of CR2 to the C3d/C3dg fragments of complement component C3. Wild-type or mutant forms of CR2 were expressed on K562 cells, and the ability of these CR2-expressing cells to bind gp350 was measured using flow cytometry. Mutations directed toward the two N-terminal extracellular domains of CR2 (SCR1-2) reveal that a large contiguous surface of CR2 SCR1-2 is involved in gp350 binding, including a number of positively charged residues (Arg-13, (Arg-28, (Arg-36, Lys-41, Lys-57, Lys-67, and Arg-83). These data appear to complement the CR2 binding site on gp350, which is characterized by a preponderance of negative charge. In addition to identifying the importance of charge in the formation of a CR2-gp350 complex, we also provide evidence that both SCR1 and SCR2 make contact with gp350. Specifically, two anti-CR2 monoclonal antibodies, designated as monoclonal antibodies 171 and 1048 whose primary epitopes are located within SCR2, inhibit binding of wild-type CR2 to EBV gp350; with regard to SCR1, both K562 cells expressing an S15P mutation and recombinant S15P CR2 proteins exhibit diminished gp350 binding.  相似文献   

7.
8.
Epstein Barr virus (EBV) infection of human B lymphocytes in vitro results in immortalisation of the cells and augmented membranous expression of numerous B-cell activation molecules, including CD23. Other studies demonstrated that only those B lymphocytes which carry the surface CD21 (EBV receptor) become transformation-competent. Inspired by the relatively unclear relations between expression of EBV and those of CD21 and CD23 in in vivo conditions we have decided to define correlations between tissue markers of EBV and of CD21 and CD23 molecules in B-cell non-Hodgkin's lymphomas (NHLs) in children. The studies were performed on an archival tissue material originating from children with B-cell NHLs (n=26) using immunocytochemical techniques, in situ hybridisation, and PCR. Our studies confirmed the latent phase of EBV infection in all of the EBV-positive patients. Viral proteins as well as viral RNAs (EBERs) was found both in the cytoplasm, in cell nuclei and in cell membranes of mainly the transformed lymphocytes B. Expression of the latent proteins (EBNA2 and LMP1) and that of EBERs in B-cell NHLs was significantly higher as compared to children with nonneoplastic lesions. The studies demonstrated reciprocally positive correlations between expressions of CD21 and CD23 in our children, but no correlation could be demonstrated between expression of EBV tissue markers and that of CD21 and/or CD23. Positive correlation was confirmed between expression of EBNA2 and LMP1 as well as between expression of the two proteins and EBERs in B-cell NHLs. Our studies have shown mainly latency III pattern of EBV. We have also demonstrated a novel form of EBV latency with no EBERs expression. The high detectability of EBV-positive cases both in the group of B-cell NHLs (77%), and in the group with non-neoplastic lesions (64%) suggested that only more pronounced tissue expression of EBV markers in B-cell NHLs as compared to the non-neoplastic material may point to a potential role of EBV in pathogenesis of lymphoma in this group of population in our country.  相似文献   

9.
Epstein-Barr virus (EBV), a herpesvirus with oncogenic potential, is camouflaged with glycoprotein 350/220, which mimics the human ligand C3dg and thereby binds to and exploits complement receptor type 2 (CR2; CD21), the EBV receptor. It has not been possible to determine the role of CR2 during postbinding events of viral infection because all B lymphocytes express endogenous CR2, precluding an informative study of receptor mutants. We have overcome this obstacle through creation of a novel experimental system based on molecular dissection of the ligand-binding domains of human CR2 and murine CR2. Our results demonstrate first, that two discontinuous amino acid substitutions within the ligand-binding domain of murine CR2 render it capable of mediating EBV infection of human B-lymphoblastoid cells, and second, that the specific role of CR2 during EBV infection is to capture virions at the cell surface, after which cofactors not associated with CR2 mediate postbinding events. These are the first studies to be described in which a cell that is normally susceptible to viral infection can be manipulated so as to direct entry of virions via recombinant or endogenous receptors.  相似文献   

10.
We studied the physiological role of complement receptor type II (CR2, C3d/EBV receptor) expressed on T cells using MT-2 cells. First, we confirmed CR2 expression on MT-2 cells by flow cytometry and found that the MW of CR2 molecules on these cells and Raji B cells were the same by SDS-PAGE analysis. When MT-2 lysates were incubated with anti-CR2 mAb HB5 and thereafter with 32P-labeled ATP, 52- and 74-kDa proteins were phosphorylated, suggesting the activation of MT-2 cells through the complex of CR2 with these proteins. In this respect, we measured lymphotoxin production by MT-2 cells when incubated with C3d or EBV. The cytotoxicity of the MT-2 supernatant against L929 cells was elevated in a dose- and time-dependent manner. Next, we confirmed EBNA expression on EBV-infected MT-2 cells and attempted to establish an EBV-positive MT-2 clone by in vitro EBV infection. However, these clones disappeared during cloning. To clarify this mechanism, we examined the EBV genome in MT-2 cells. By Southern blot analysis, BamHI digestion of DNA extracts from MT-2 cells 3 days after EBV treatment gave a 3.0-kb signal which comigrated with the EBV BamHI-W probe. The 3.0-kb signal of genomic EBV-DNA was detected at 1, 2, 3, 5, and 7 days after EBV treatment, but could not be detected at 14 days. Thus, natural ligands of CR2 stimulate CR2-positive MT-2 cells through their functionally active CR2 molecules and in vitro EBV infection of MT-2 cells might be transient.  相似文献   

11.
The predicted amino acid sequence of human complement receptor 2 (CR2, CD21, C3d,g/Epstein-Barr virus receptor) and its genetic murine homologue are approximately 70% identical. The sequence of each consists of a linear array of 60-70 amino acid repeats designated short consensus repeats (SCRs). Although they share significant sequence identity, a major difference in the activities of these two proteins has been believed to be the ability of human, but not mouse, CR2 to mediate Epstein-Barr virus (EBV) infection of B lymphocytes. In order to formally address this question and to directly compare the activities of the CR2 protein of each species, we have expressed recombinant mouse CR2 (rMCR2) in a human K562 erythroleukemia cell line background. We have found that rMCR2 reacts with two previously described rat anti-MCR2 monoclonal antibodies (mAbs), 7G6 and 7E9, but not mAb 8C12, which recognizes only mouse complement receptor 1. rMCR2 rosettes with erythrocytes bearing mouse and human C3d,g and binds glutaraldehyde cross-linked human C3d,g with a similar Kd as human CR2 (HCR2). rMCR2 does not bind EBV. By using this observation and constructing chimeras bearing portions of MCR2 on a HCR2 background, we have been able to define unique sequences in HCR2 SCRs 1 and 2 important in the interaction with both mAb OKB7, which blocks EBV binding and infection, and with EBV. In addition, by using blocking peptides derived from HCR2 sequence, we have identified a second distinct region in SCR2 important in EBV binding. Therefore, within the first two SCRs of HCR2 are multiple distinct sites of interaction with EBV and with mAb OKB7.  相似文献   

12.
13.
Epstein-Barr virus (EBV) establishes latent infections in a significant percentage of the population. Latent membrane protein 2A (LMP2A) is an EBV protein expressed during latency that inhibits B-cell receptor signaling in lymphoblastoid cell lines. In the present study, we have utilized a transgenic mouse system in which LMP2A is expressed in B cells that are specific for hen egg lysozyme (E/HEL-Tg). To determine if LMP2A allows B cells to respond to antigen, E/HEL-Tg mice were immunized with hen egg lysozyme. E/HEL-Tg mice produced antibody in response to antigen, indicating that LMP2A allows B cells to respond to antigen. In addition, E/HEL-Tg mice produced more antibody and an increased percentage of plasma cells after immunization compared to HEL-Tg littermates, suggesting that LMP2A increased the antibody response in vivo. Finally, in vitro studies determined that LMP2A acts directly on the B cell to increase antibody production by augmenting the expansion and survival of the activated B cells, as well as increasing the percentage of plasma cells generated. Taken together, these data suggest that LMP2A enhances, not diminishes, B-cell-specific antibody responses in vivo and in vitro in the E/HEL-Tg system.  相似文献   

14.
We report the discovery of previously unrecognised short consensus repeats (SCRs) within human and chimpanzee CR1 and CR1L. Analysis of available genomic, protein and expression databases suggests that these are actually genomic remnants of SCRs previously reported in other complement control proteins (CCPs). Comparison with the nucleotide motifs of the 11 defined subfamilies of SCRs justifies the designation g-like because of the close similarity to the g subfamily found in CR2 and MCP. To date, we have identified five such SCRs in human and chimpanzee CR1, one in human and chimpanzee CR1L, but none in either rat or mouse Crry in keeping with the number of internal duplications of the long homologous repeat (LHR) found in CR1 and CR1L. In fact, at the genomic level, the ancestral LHR must have contained eight SCRs rather than seven as previously thought. Since g-like SCRs are found immediately downstream of d SCRs, we suggest that there must have been a functional dg set which has been retained by CR2 and MCP but which is degenerate in CR1 or CR1L. Interestingly, dg is also present in the CR2 component of mouse CR1. The degeneration of the g SCR must have occurred prior to the formation of primate CR1L and prior to the duplication events which resulted in primate CR1. In this context, the apparent conservation of g-like SCRs may be surprising and may suggest the existence of mechanisms unrelated to protein coding. These results provide examples of the many processes which have contributed to the evolution of the extensive repertoire of CCPs.  相似文献   

15.
A set of B-cell activation molecules, including the Epstein-Barr virus (EBV) receptor CR2 (CD21) and the B-cell activation antigen CD23 (Blast2/Fc epsilon RII), is turned on by infecting EBV-negative B-lymphoma cell lines with immortalizing strains of the viruslike B95-8 (BL/B95 cells). This up regulation may represent one of the mechanisms involved in EBV-mediated B-cell immortalization. The P3HR1 nonimmortalizing strain of the virus, which is deleted for the entire Epstein-Barr nuclear antigen 2 (EBNA2) protein open reading frame, is incapable of inducing the expression of CR2 and CD23, suggesting a crucial role for EBNA2 in the activation of these molecules. In addition, lymphoma cells containing the P3HR1 genome (BL/P3HR1 cells) do not express the viral latent membrane protein (LMP), which is regularly expressed in cells infected with immortalizing viral strains. Using electroporation, we have transfected the EBNA2 gene cloned in an episomal vector into BL/P3HR1 cells and have obtained cell clones that stably express the EBNA2 protein. In these clones, EBNA2 expression was associated with an increased amount of CR2 and CD23 steady-state RNAs. Of the three species of CD23 mRNAs described, the Fc epsilon RIIa species was preferentially expressed in these EBNA2-expressing clones. An increased cell surface expression of CR2 but not of CD23 was observed, and the soluble form of CD23 molecule (SCD23) was released. We were, however, not able to detect any expression of LMP in these cell clones. These data demonstrate that EBNA2 gene is able to complement P3HR1 virus latent functions to induce the activation of CR2 and CD23 expression, and they emphasize the role of EBNA2 protein in the modulation of cellular gene implicated in B-cell proliferation and hence in EBV-mediated B-cell immortalization. Nevertheless, EBNA2 expression in BL/P3HR1 cells is not able to restore the level of CR2 and CD23 expression observed in BL/B95 cells, suggesting that other cellular or viral proteins may also have an important role in the activation of these molecules: the viral LMP seems to be a good candidate.  相似文献   

16.
A chimeric fusion protein encompassing the CD46 ectodomain linked to the C-terminal part of the C4b binding protein (C4bp) alpha chain (sCD46-C4bpalpha) was produced in eukaryotic cells. This protein, secreted as a disulfide-linked homo-octamer, was recognized by a panel of anti-CD46 antibodies with varying avidities. Unlike monomeric sCD46, the octameric sCD46-C4bpalpha protein was devoid of complement regulatory activity. However, sCD46-C4bpalpha was able to bind to the measles virus hemagglutinin protein expressed on murine cells with a higher avidity than soluble monomeric sCD46. Moreover, the octameric sCD46-C4bpalpha protein was significantly more efficient than monomeric sCD46 in inhibiting virus binding to CD46, in blocking virus induced cell-cell fusion, and in neutralizing measles virus in vitro. In addition, the octameric sCD46-C4bpalpha protein, but not the monomeric sCD46, fully protected CD46 transgenic mice against a lethal intracranial measles virus challenge.  相似文献   

17.
Pure human gamma-interferon as well as alpha-interferon inhibited induction of immunoglobulin synthesis by Epstein-Barr virus but not by pokeweed mitogen in B lymphocytes from adult but not from newborn humans. The interferons inhibited the infected B lymphocytes directly, irrespective of the Epstein-Barr virus immune status of the donor, and their inhibitory effect was synergistic.  相似文献   

18.
19.
Human complement receptor type 2 (CR2, CD21) is a cell surface receptor that binds three distinct ligands (complement C3d, Epstein-Barr virus gp350/220, and the low-affinity IgE receptor CD23) via the N-terminal two of fifteen or sixteen short consensus/complement repeat (SCR) domains. Here, we report biophysical studies of the CR2 SCR 1-2 domain binding to its ligand C3dg. Two recombinant forms of CR2 containing the SCR 1-2 and SCR 1-15 domains were expressed in high yield in Pichia pastoris and baculovirus, respectively. Circular dichroism spectroscopy showed that CR2 SCR 1-2 receptor possessed a beta-sheet secondary structure with a melting temperature of 59 degrees C. Using surface plasmon resonance, kinetic parameters for the binding of either CR2 SCR 1-2 or the full-length SCR 1-15 form of CR2 showed that the affinity of binding to immobilized C3d is comparable for the SCR 1-15 compared to the SCR 1-2 form of CR2. Unexpectedly, both the association and dissociation rates for the SCR 1-15 form were slower than for the SCR 1-2 form. These data show that the SCR 1-2 domains account for the primary C3dg binding site of CR2 and that the additional SCR domains of full-length CR2 influence the ability of CR2 SCR 1-2 to interact with its ligand. Studies of the pH and ionic strength dependence of the interaction between SCR 1-2 and C3d by surface plasmon resonance showed that this is influenced by charged interactions, possibly involving the sole His residue in CR2 SCR 1-2. Sedimentation equilibrium studies of CR2 SCR 1-2 gave molecular weights of 17 000, in good agreement with its sequence-derived molecular weight to show that this was monomeric. Its sedimentation coefficient was determined to be 1.36 S. The complex with C3d gave molecular weights in 50 mM and 200 mM NaCl buffer that agreed closely with its sequence-derived molecular weight of 50 600 and showed that a 1:1 complex had been formed. Molecular graphics views of homology models for the separate CR2 SCR 1 and SCR 2 domains showed that both SCR domains exhibited a distribution of charged groups throughout its surface. The single His residue is located near a long eight-residue linker between the two SCR domains and may influence the linker conformation and the association of C3d and CR2 SCR 1-2 into their complex. Sedimentation modeling showed that the arrangement of the two SCR domains in CR2 SCR 1-2 is highly extended in solution.  相似文献   

20.
CD22 and CD21 are glycoproteins primarily expressed on normal and neoplastic human B cells. The surface expression of these two molecules parallel each other during normal B cell differentiation, and the reported relative mobilities for CD22 and CD21 are 130/140 kDa and 140 kDa, respectively. Herein we present a detailed analysis of the biosynthesis and structure of CD22 and also compare it directly to CD21. Electrophoresis under reducing and nonreducing conditions suggested that CD22 and CD21 may have similarities in intra-chain disulfide bond formation. Biosynthesis and processing of CD22 and CD21 were very similar with respect to kinetics and post-translational modification, and both could be phosphorylated. However, endoglycosidase digestion (using N-glycanase and endoglycosidase H) and peptide mapping (using V8 protease and N-chlorosuccinimide) strongly suggested that CD22 and CD21 are distinct gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号