首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrostatic pressure-induced structural changes in subfragment-1 (S1) of myosin molecule were studied. ATP-induced emission spectra of S1 were used to detect global structural change of S1 by pressure treatment. The fluorescence intensity of unpressurized S1 increased by addition of ATP. The increment of fluorescence of pressurized S1 up to 150 MPa was almost the same as control, whereas it became smaller above 200 MPa. ATP binding ability of S1 examined using 1, N6-ethenoadenosine 5′-diphosphate (-ADP) indicated that the binding of -ADP to S1 decreased in the range of 250–300 MPa. S1 pressurized below 250 MPa and unpressurized S1 similarly bound to F-actin, although binding of S1 pressurized above 250 MPa decreased. Electron microscopic observation revealed arrowhead structure in control acto-S1, while disordered arrowhead structure was observed in acto-S1 prepared from pressurized S1 at 300 MPa. S1 pressurized below 250 MPa retained the same actin activated ATPase activity as the control, whereas the activity decreased to 60% at 300 MPa. Pressure treated S1 was easily cleaved by tryptic digestion into three domains, i.e. 27 kDa (N-terminal), 50 and 20 kDa (C-terminal) fragments, which were the same as those in unpressurized one. It is concluded that pressure-induced global structural changes of S1 begin to occur about 150 MPa, and the local structural changes in ATPase and actin binding sites followed with elevating pressure to 250–300 MPa.  相似文献   

2.
The process of pressure-induced denaturation of carboxypeptidase Y and the role of the carbohydrate moiety in its response to pressure and low temperature were investigated by measuring in situ the catalytic activity and, the intrinsic and 8-anilino-1-naphthalene sulfonic acid binding fluorescences. Pressure-induced denaturation of carboxypeptidase Y is a process involving at least three transitions. Low pressures (below 150 MPa) induced slight conformational changes characterized by a slight decrease in the center of the spectral mass of intrinsic fluorescence, whereas no changes in 8-anilino-1-naphthalene sulfonic acid binding fluorescence were observed and 80% of the catalytic activity remained. Higher pressure (150-500 MPa) induced further conformational changes, characterized by a large decrease in the center of the spectral mass of intrinsic fluorescence, a large increase in the 8-anilino-1-naphthalene sulfonic acid binding fluorescence and the loss of all catalytic activity. Thus, this intermediate exhibited characteristics of molten globule-like state. A further increase, in pressure (above 550 MPa) induced transition from this first molten globule-like state to a second molten globule-like state. This two-stage denaturation process can be explained by assuming the existence of two independent structural domains in the carboxypeptidase molecule. A similar three-transition process was found for unglycosylated carboxypeptidase Y, but, the first two transitions clearly occurred at lower pressures than those for glycosylated carboxypeptidase Y. These findings indicate that the carbohydrate moiety protects carboxypeptidase Y against pressure-induced denaturation. The origin of the protective effects is discussed based on the known crystallographic structure of CPY.  相似文献   

3.
Studying on the pressure effects of the structure and functions of the multidomain protein, protein disulfide isomerase (PDI), the intrinsic Trp fluorescence spectra of PDI were measured under high pressure. PDI has 5 Trp residues and the two of all Trp residues are located at the neighborhood of the active site (WCGHC) for isomerase activity. On the basis of the red shift of center of spectral mass (CSM) of the intrinsic Trp fluorescence and the decrease in its fluorescence intensity, the changes in tertiary structure of PDI were observed above 100 MPa. These structural changes were completed at 400 MPa. The CSM of 400 MPa denatured PDI was comparable to that of 6.0 M GdnHCl denatured one. All of the Trp residues included in PDI are completely exposed to aqueous medium at 400 MPa. However, there is the significant difference between the pressure and GdnHCl-denatured PDI. The Trp fluorescence intensity was decreased with increasing pressure, but increased with the increase of the GdnHCl concentration. It is implied that the pressure-denatured state of PDI might remain compact not to be extensively unfolded. In the point of view about the reversibility of pressure-treated PDI, the tertiary structure was completely recovered after released to ambient pressure. The disulfide reduction and chaperone activity of 400 MPa-treated PDI were also recovered to be comparable to those of native one. Despite of a multidomain protein, the excellence in both structural and functional recovery of pressure-denatured PDI is quite remarkable. These unique properties of PDI against high pressure provide the insights into understanding the pressure-induced denaturation of PDI.  相似文献   

4.
Apo-calmodulin, a small soluble mainly α protein, is a calcium-dependent protein activator. Calcium binding affects the calmodulin conformation but also its stability. Calcium free form unfolds between 40 and 80 °C, whereas the calcium-saturated form is stable up to temperatures as high as 100 °C, forbidding comparison of the thermal unfolding pathways of the two forms. Thus, this paper focuses especially on the conformation of pressure-induced unfolding states of both forms of calmodulin, by combining small-angle neutron scattering (SANS) with biophysical techniques such as tyrosines and ANS fluorescence. In contrast to heat denaturation (Gibrat et al., BBA, 2012), the pressure denaturation of calmodulin is reversible up to pressures of 3000 bar (300 MPa). A pressure-induced compact intermediate state has been found for the two calmodulin forms, but their unfolding pathways are different. A domain compaction and an increase of the ANS fluorescence of holo form have been evidenced. On the contrary, a domain dilatation and an ANS fluorescence decrease have been found for the apo form. The pressure induced an increase of the interdomain distance for both calmodulin forms, suggesting that the central linker of calmodulin is flexible in solution.  相似文献   

5.
The process of pressure-induced modification of horse liver alcohol dehydrogenase (HLADH) was followed by measuring in situ catalytic activity (up to 250 MPa), intrinsic fluorescence (0.1-600 MPa) and modifications of FTIR spectra (up to 1000 MPa). The tryptophan fluorescence measurements and the kinetic data indicated that the pressure-induced denaturation of HLADH was a process involving several transitions and that the observed transient states have characteristic properties of molten globules. Low pressure (< 100 MPa) induced no important modification in the catalytic efficiency of the enzyme and slight conformational changes, characterized by a small decrease in the centre of spectral mass of the enzyme's intrinsic fluorescence: a native-like state was assumed. Higher pressures (100-400 MPa) induced a strong decrease of HLADH catalytic efficiency and further conformational changes. At 400 MPa, a dimeric molten globule-like state was proposed. Further increase of pressure (400-600 MPa) seemed to induce the dissociation of the dimer leading to a transition from the first dimeric molten globule state to a second monomeric molten globule. The existence of two independent structural domains in HLADH was assumed to explain this transition: these domains were supposed to have different stabilities against high pressure-induced denaturation. FTIR spectroscopy was used to follow the changes in HLADH secondary structures. This technique confirmed that the intermediate states have a low degree of unfolding and that no completely denatured form seemed to be reached, even up to 1000 MPa.  相似文献   

6.
The pressure denaturation of trypsin from bovine pancreas was investigated by fluorescence spectroscopy in the pressure range 0. 1-700 MPa and by FTIR spectroscopy up to 1000 MPa. The tryptophan fluorescence measurements indicated that at pH 3.0 and 0 degrees C the pressure denaturation of trypsin is reversible but with a large hysteresis in the renaturation profile. The standard volume changes upon denaturation and renaturation are -78 mL.mol-1 and +73 mL.mol-1, respectively. However, the free energy calculated from the data in the compression and decompression directions are quite different in absolute values with + 36.6 kJ.mol-1 for the denaturation and -5 kJ. mol-1 for the renaturation. For the pressure denaturation at pH 7.3 the tryptophan fluorescence measurement and enzymatic activity assays indicated that the pressure denaturation of trypsin is irreversible. Interestingly, the study on 8-anilinonaphthalene-1-sulfonate (ANS) binding to trypsin under pressure leads to the opposite conclusion that the denaturation is reversible. FTIR spectroscopy was used to follow the changes in secondary structure. The pressure stability data found by fluorescence measurements are confirmed but the denaturation was irreversible at low and high pH in the FTIR investigation. These findings confirm that the trypsin molecule has two domains: one is related to the enzyme active site and the tryptophan residues; the other is related to the ANS binding. This is in agreement with the study on urea unfolding of trypsin and the knowledge of the molecular structure of trypsin.  相似文献   

7.
C. Clry  F. Renault  P. Masson 《FEBS letters》1995,370(3):212-214
The denaturing effect of pressure on the structure of human butyrylcholinesterase was examined by gel electrophoresis under pressure and by 8-anilino-1-naphthalene sulfonate (ANS) binding. It was found that the fluorescence intensity of bound ANS is increased by pressure between 0.5 and 1.5 kbar and that the hydrodynamic volume of the enzyme swells when pressures around 1.5 kbar are applied. These findings indicate that pressure denaturation of butyrylcholinesterase is a multi-step process and that the observed transient pressure-denatured states have characteristics of molten globules.  相似文献   

8.
Human butyrylcholinesterase is a nonspecific enzyme of clinical, pharmacological and toxicological significance. Although the enzyme is relatively stable, its activity is affected by numerous factors, including pressure. In this work, hydrostatic pressure dependence of the intrinsic tryptophan fluorescence in native and salted human butyrylcholinesterase was studied up to the maximum pressure at ambient temperature of about 1200 MPa. A correlated large shift toward long wavelengths and broadening observed at pressures between 200 and 700 MPa was interpreted as due to high pressure-induced denaturation of the protein, leading to an enhanced exposure of tryptophan residues into polar solvent environment. This transient process in native butyrylcholinesterase presumably involves conformational changes of the enzyme at both tertiary and secondary structure levels. Pressure-induced mixing of emitting local indole electronic transitions with quenching charge transfer states likely describes the accompanying fluorescence quenching that reveals different course from spectral changes. All the pressure-induced changes turned irreversible after passing a mid-point pressure of about 400 ± 50 MPa. Addition of either 0.1 M ammonium sulphate (a kosmotropic salt) or 0.1 M lithium thiocyanate (a chaotropic salt) to native enzyme similarly destabilized its structure.  相似文献   

9.
Myosin is an asymmetric protein that comprises two globular heads (S1) and a double-stranded alpha-helical rod. We have investigated the effects of urea and the methylamines trimethylamine oxide (TMA-O) and glycine betaine (betaine) on activity and structure of skeletal muscle myosin. K(+) EDTA ATPase activity of myosin was almost completely inhibited by urea (2M); TMA-O stimulated myosin activity, whereas betaine had no effect. When combined with urea (0-2M), TMA-O or betaine (1 M) effectively protected the ATPase activity of myosin against inhibition. Intrinsic fluorescence measurements showed that in urea or TMA-O (0-2M), there were no shifts in the center of mass of the fluorescence spectrum of myosin, despite a decrease in fluorescence intensity. However, these osmolytes at concentrations above 2M produced a red shift in the emission spectrum. Betaine alone did not alter the center of mass at any concentration tested up to 5.2M. Thus, modifications in ATPase activity induced by low concentrations of solutes (<2M) are not directly correlated with the modifications in myosin structure detected by fluorescence. Both methylamines (>or=1M) were also able to protect myosin structure against urea-induced effects (2-8M). Protection was not observed for S1, supporting the hypothesis that these osmolytes have a biphasic effect on myosin: at lower concentrations there is an effect on the globular portion (S1), and at higher concentrations there is an effect on the coiled-coil (rod) portion of myosin.  相似文献   

10.
The acid-induced isomerization (the N-F transition) and expansion of bovine plasma albumin--1-anilino-8-naphthalenesulfonate complex, BPA-ANS1.0 complex (molar ratio of added ANS to BPA = 1.0) were studied by measuring fluorescence and induced CD spectra of ANS. Decrease in the reciprocal of fluorescence polarization, increase in fluorescence intensity and blue shift of fluorescence of ANS in BPA-ANS1.0 complex were correlated with the initial part of the N-F transition and/or the N-F1 transition. Induced CD spectra of ANS showed positive bands at 250-258 and 320-350 nm and one negative band at 280 nm. Most of changes (decreases) in -[theta]280 were also correlated with the initial part of the N-F transition and/or the N-F1 transition. Changes in fluorescence parameters and induced CD spectra of ANS (-[theta]280) might indicate the conformational changes around a strong ANS binding site in the N-terminal domain (Reed et al. (1975), Jonas & Weber (1970) and Brown & Shockley (1982].  相似文献   

11.
The dissociation of mu- and m-calpains was studied by fluorescence spectroscopy under high hydrostatic pressure (up to 650 MPa). Increasing pressure induced a red shift of the tryptophan fluorescence of the calcium-free enzyme. The concentration dependence of the spectral transition was consistent with a pressure-induced dissociation of the subunits. Rising temperature increased the stability of calpain heterodimers and confirmed the predominance of hydrophobic interactions between monomers. At saturating calcium, the spectral transition was not observed for native or iodoacetamide-inactivated calpains, indicating that they were already dissociated by calcium. The reaction volume was about -150 ml mol-1 for both isoforms, and the dissociation constants at atmospheric pressure are approximately 10-12 M and 10-15 M for mu- and m-calpains, respectively. This result indicates a tighter interaction in the isoform that requires higher calcium concentration for activity.  相似文献   

12.
In order to investigate the effects of temperature and ionic strength on the N-B-transition and the alkaline denaturation of the human serum albumin, the pH-dependences of fluorescence position and relative yield of Trp-24 and of protein bound dye ANS were measured. The measurements were carried out at temperatures from 10 to 45 degrees C and ionic strengths (NaCl) from 0.001 to 0.2. The pH-induced structural transitions have different realization in environments of tryptophanyl and tightly bound ANS. The alkaline denaturation does not change the Trp-214 fluorescence. The N-B-transition gives rise to the slight polarity and/or mobility lowering in the Trp-214 environment (the shorter-wave-length spectral shift). Increase in the temperature and ionic strength induces the shift of the transition midpoint from ca. 8 to 8.7 and reduces the spectral shift amplitude. At low ionic strengths, the new structural transition in the Trp-214 environment is observed at pH change from 6.7 to 5.7. This transition is not observable using ANS fluorescence. The N-B-transition is accompanied by an enhancement and longer-wavelength shift of the ANS fluorescence spectra. The transition midpoint is independent of temperature, but is shifted to lower pH values at a decrease of ionic strength value. At ionic strengths less than or equal to 0.01 the shorter-wavelength spectral shift is seen at pH from 7.5 to 9, which seems to reflect the disulfide B-A-isomerisation. The alkaline denaturation gives rise to the sharp quenching of ANS fluorescence, probably due to the ANS binding site decomposition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (DeltaV(0)) of azurin from Pseudomonas aeruginosa and on the internal dynamics of the protein fold under pressure were probed by the fluorescence and phosphorescence emission of Trp-48, deeply buried in the compact hydrophobic core of the macromolecule. Pressure-induced unfolding, monitored by the shift of the center of mass of the fluorescence spectrum, showed that DeltaV(0) is in the range of 60-70 mL/mol, not significantly different between cavity mutants and compact azurin species such as the wild-type and the mutant C3A/C26A, in which the superficial disulphide has been removed. The lack of extra volume in F110S and I7S proves that the engineered cavities, 40 A(3) in I7S and 100 A(3) in F110S, are filled with water molecules. Changes in flexibility of the protein matrix around the chromophore were monitored by the intrinsic phosphorescence lifetime (tau(0)). The application of pressure in the predenaturation range initially decreases the internal flexibility of azurin, the trend eventually reverting on approaching unfolding. The main difference between compact folds, wild-type and C3A/C26A, and cavity mutants is that the inversion point is powered from approximately 3 kbar to 1.5 kbar for F110S and <0.1 kbar for I7S, meaning that in the latter species pressure-induced internal hydration dominates very early over any compaction of the globular fold resulting from the reduction of internal free volume. The similar response between wild-type and the significantly less-stable C3A/C26A mutant suggests that thermodynamic stability per se is not the dominant factor regulating pressure-induced internal hydration of proteins.  相似文献   

14.
The effect of transient exposure of Staphylococcus aureus enterotoxin A (SEA) to high pressure and/or denaturing agents was examined by assessing the toxin superantigenicity and immunoreactivity, and by monitoring pressure-induced changes in fluorescence emission spectra. Pressurization of SEA at 600 MPa and 45 °C in Tris–HCl buffer (20 mM, pH 7.4) resulted in a marked increase in both T-cell proliferation (superantigenicity) and immunoreactivity. In opposite, pressurization at 20 °C did not change significantly SEA superantigenicity and immunoreactivity, indicating some toxin baro-resistance. Exposure of SEA to 8 M urea at atmospheric pressure or at 600 MPa and 20 °C, also led to a marked increase of superantigenicity (but not of immunoreactivity). In contrast, exposure of SEA to sodium-dodecylsulfate (30 mM) led to an increase of immunoreactivity with some effect on superantigenicity after pressurization at 45 °C only. High pressure up to 600 MPa induced spectral changes which at 20 °C were fully reversible upon decompression. At 45 °C, however, a sharp break of the centre of spectral mass mainly due to tryptophan residues was observed at 300 MPa, and irreversible spectral changes mainly related to tyrosine residues subsisted after pressure release, indicating a marked protein conformational transition. Urea 8 M further increased SEA structural changes at 600 MPa and 20 °C. These results indicate that SEA, under a combination of high pressure and mild temperature, as well as in the presence of urea, partly unfolds to a structure of strongly increased T-cell proliferative ability.  相似文献   

15.
Hydrolysis of β-lactoglobulin with thermolysin and pepsin at pressures ranging between 0.1 and 350 MPa showed a significant increase of cleavage rates. Pressure-induced changes of susceptibility to hydrolysis of β-lactoglobulin proteolytic sites were also observed. The pressure, raised to 200 MPa, accelerates the hydrolysis of β-lactoglobulin by thermolysin and changes obtained peptide profiles. Initially, higher pressure makes the N-terminal, and to a smaller extent, C-terminal peptide fragments of β-lactoglobulin molecule, more susceptible to removal by thermolysin. This indicates combined influence of pressure-induced thermolysin activation and partial unfolding of β-lactoglobulin by compression at neutral pHs. The rates of hydrolysis of β-lactoglobulin by pepsin (negligible at 0.1 MPa) are increased considerably with pressure up to 300 MPa. The Susceptibility of β-lactoglobulin proteolytic sites to peptic cleavage remains constant over all the studied pressure range. The lack of significant qualitative changes in the peptic peptide profiles produced at different pressures and at clearly pressure-dependent rates points to negative reaction volume changes as the major factor in peptic hydrolysis of β-lactoglobulin under high pressure. Thus the β-lactoglobulin molecule resists pressure-induced unfolding in acid pHs and yields to it in neutral pHs. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Ikkai & Ooi [Ikkai, T. & Ooi, T. (1966) Biochemistry 5, 1551-1560] made a thorough study of the effect of pressure on G- and F-actins. However, all of the measurements in their study were made after the release of pressure. In the present experiment in situ observations were attempted by using epsilon ATP to obtain further detailed kinetic and thermodynamic information about the behaviour of actin under pressure. The dissociation rate constants of nucleotides from actin molecules (the decay curve of the intensity of fluorescence of epsilon ATP-G-actin or epsilon ADP-F-actin) followed first-order kinetics. The volume changes for the denaturation of G-actin and F-actin were estimated to be -72 mL x mol(-1) and -67 mL x mol(-1) in the presence of ATP, respectively. Changes in the intensity of fluorescence of F-actin whilst under pressure suggested that epsilon ADP-F-actin was initially depolymerized to epsilon ADP-G-actin; subsequently there was quick exchange of the epsilon ADP for free epsilon ATP, and then polymerization occurred again with the liberation of phosphate from epsilon ATP bound to G-actin in the presence of excess ATP. In the higher pressure range (> 250 MPa), the partial collapse of the three-dimensional structure of actin, which had been depolymerized under pressure, proceeded immediately after release of the nucleotide, so that it lost the ability to exchange bound ADP with external free ATP and so was denatured irreversibly. An experiment monitoring epsilon ATP fluorescence also demonstrated that, in the absence of Mg(2+)-ATP, the dissociation of actin-heavy meromyosin (HMM) complex into actin and HMM did not occur under high pressure.  相似文献   

17.
The structure and stability of the fluorescent protein monomeric Kusabira Orange (mKO), a GFP-like protein, was studied under different pressure levels and in different chemical environments. At different pH values (between pH 7.4 and pH 4.0) and under a pressure up to 600 MPa (at 25 °C), mKO did not show significant fluorescence spectral changes, indicating a structural stability of the protein. In more extreme chemical conditions (at pH 4.0 in the presence of 0.8 M guanidine hydrochloride), a marked reduction of mKO fluorescence intensity emission was observed at pressures above 300 MPa. This fluorescence emission quenching may be due to the loss of the intermolecular bonds and, consequently, to the destructuration of the mKO chromophore structure. Since the electrostatic and hydrophobic interactions as well as the salt bridges present in proteins are usually perturbed under high pressure, the reduction of mKO fluorescence intensity emission is associated to the perturbation of the protein salt bridges network.  相似文献   

18.
The conformational change in a single molecular species, beta3, of beta-conglycinin in an acidic ethanol solution was kinetically studied by the stopped-flow technique, utilizing the intrinsic fluorescence of proteins and the fluorescence of 1-anilinonaphthalene-8-sulfonic acid (ANS) bound to the proteins. The time-course of the intrinsic fluorescence changes clearly showed the rate of conformational change below and above 25% ethanol to be quite different from each other. ANS could bind well to the protein in an ethanol concentration range of 15-25%. However, the rate of conformational change of the protein corresponding to that for ANS binding could not be obtained at less than 25% ethanol, while the rate of conformational change agreed well with that for ANS binding at more than 25% ethanol. In addition, the process showing the greatest and slowest ANS binding was not apparent in the denaturation of beta-conglycinin under the conditions employed. These results lead to the conclusions that the beta-conglycinin structure could be maintained in the mild molten globule-like denaturation state, and that various tertiary structural changes could take place without any significant effect on the high sensitivity of intrinsic fluorescence after the secondary structural changes.  相似文献   

19.
Insertion of the reactive center loop in beta-sheet A in serpins has been typically inferred from the increased stability of the cleaved form to thermal- and urea-induced denaturation. We describe a convenient and rapid fluorescence-based method that differentiates the loop-inserted form from the loop-exposed form in ovalbumin, a prototypic noninhibitory serpin. Recombinant wild-type and R345A ovalbumins in the intact form bind ANS with equilibrium dissociation constants of 116 and 125 microM and a maximal fluorescence increase of 200 and 264%, respectively, in pH 6.8 buffer. Cleavage of the two proteins with porcine pancreatic elastase results in a 1.6- and 2.6-fold increase in the ANS-binding affinity. While cleavage of the reactive center loop in rR345A ovalbumin results in a approximately 200% increase in the ANS fluorescence, the rWT protein exhibits a approximately 50% decrease. Similar experiments with alpha(1)-proteinase inhibitor and antithrombin, two inhibitory serpins that exhibit reactive center loop insertion, show a decrease in ANS fluorescence on cleavage with porcine pancreatic elastase and thrombin, respectively. Denaturation studies in guanidinium hydrochloride indicate that the reactive center loop is inserted in the main body of the serpin in the cleaved form of rR345A mutant, while it is exposed in the cleaved form of rWT ovalbumin. These results demonstrate that ANS fluorescence change is an indicator of the loop-inserted or loop-exposed form in these recombinant ovalbumins, and thus could be advantageously used for probing reactive center loop insertion in ovalbumins. The major increase in fluorescence for the rR345A mutant on cleavage primarily arises from a change in ANS binding rather than from the generation of an additional ANS-binding site.  相似文献   

20.
Acid denaturation of Aspergillus niger glucoamylase was studied using different conformational probes. Both far-UV CD spectral signal (MRE222 nm) and tryptophan fluorescence remained unchanged in the pH range, 7.0–3.0 but decreased significantly below pH 3.0, whereas ANS fluorescence showed a marked increase below pH 1.5. Maximal changes in MRE222 nm and ANS fluorescence were noticed at pH 1.0. Acid-denatured state of glucoamylase at pH 1.0 retained a significant amount of secondary structure as reflected from far-UV CD spectra but showed a deformed tertiary structure with significant exposure of nonpolar groups as well as tryptophan residues as revealed by increased ANS fluorescence, decreased tryptophan fluorescence and three-dimensional fluorescence spectral signals and increase in Ksv value in acrylamide quenching experiments. Acid-denatured state showed no significant variation in the CD spectral signal throughout the temperature range, 0–100 °C. However, a late cooperative transition was observed upon GdnHCl treatment, compared to the native enzyme. All these results suggested that the acid-denatured state of glucoamylase at pH 1.0 represented the molten globule-like state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号