首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ras/Raf/MEK/ERK is a crucial pathway regulating cell cycle progression, apoptosis, and drug resistance. The Ras oncogene is frequently mutated in human cancer, which can result in the activation of the downstream Raf/MEK/ERK cascade leading to cell cycle progression in the absence of a growth stimulus. Raf-induced proliferation has been observed in hematopoietic cells. However, the mechanisms by which Raf affects cell cycle progression are not well described. To investigate the importance of Raf/MEK/ERK signaling in human hematopoietic cell growth, the effects of three different Raf genes, A-Raf, B-Raf and Raf-1, on cell cycle progression and regulatory gene expression were examined in TF-1 cells transformed to grow in response to b-estradiol-regulated DRaf:ER genes. Raf activation increased the expression of cyclin A, cyclin D, cyclin E, and p21Cip1, which are associated with G1 progression. Activated DRaf-1:ER and DA-Raf:ER but not DB-Raf:ER increased Cdk2 and Cdk4 kinase activity. The regulatory role of p16Ink4a, a potent Cdk4 kinase inhibitor, on the kinase activity of Cdk2 and Cdk4 was also examined. Raf induced p16Ink4a suppressor but this did not eliminate Cdk4 kinase activity. These results indicate that human hematopoietic cells transformed to grow in response to activated Raf can be used to elucidate the mechanisms by which various cell cycle regulatory molecules effect cell cycle progression. Furthermore, the differences that the various Raf isoforms have on Cdk4 activity and other cell cycle regulatory molecules can be determined in these cells.

Key Words:

Cell cycle, Raf, p21Cip1, p27Kip1, Cyclins, Cdks, Hematopoietic cells  相似文献   

2.
Cyclin D1与细胞周期调控   总被引:1,自引:0,他引:1  
细胞周期是细胞生命活动中一个最重要的过程,其关键是G1 期的启动.细胞周期蛋白(Cyclin)、细胞周期蛋白依赖性激酶(CDKs)和CDK抑制因子(CKIs)是参与钿胞周期调控的主要因子.Cyclin D1是调控细胞周期G1期的关键蛋白,是一个比其他Cyclins更加敏感的指标,对细胞周期调控至关重要.综述Cyclin D1的结构和功能及其在肿瘤组织中的表达特征,初步分析Cyclin D在昆虫细胞周期调控的研究.  相似文献   

3.
4.
5.
葡萄糖-6-磷酸脱氢酶(G6PD)在人皮肤黑色素瘤A375细胞中处于高表达与高活性状态, 但G6PD在黑色素瘤发生发展过程中的作用及其具体机制尚不明确.本文在前期运用 siRNA方法构建G6PD敲减的黑色素瘤A375稳转细胞(A375-G6PDΔ)基础上,构建表达载体pBabe-puro-G6PDWT在A375-G6PDΔ细胞中过表达野生型的G6PD基因,从而构建G6PD表达恢复的稳转细胞(A375-G6PDΔ-G6PDWT).3株细胞A375-WT、A375-G6PDΔ和 A375-G6PDΔ-G6PDWT经G6PD酶活性测定、MTT测定、克隆形成实验、流式细胞仪分析细胞周期和Western 印迹检测.结果显示,A375-G6PDΔ-G6PDWT细胞的G6PD蛋白表达量 (0.847 ± 0.080)及其活性(0.394 ± 0.029)分别是A375-G6PDΔ的3.28倍(P<0.01) 和7.34倍(P<0.01),分别是A375-WT细胞的91-57%和2.12倍(P<0.05).与A375-WT细 胞相比,A375-G6PDΔ细胞G0/G1期细胞数增加,S期细胞数减少,增殖指数PI降低了25-70%(P<0.05),细胞周期蛋白D1/D2、细胞周期蛋白E表达分别下降37.4%、54.3% (P<0.01)和17.3%;而A375-G6PDΔ-G6PDWT细胞呈现G1/S期阻滞解除,细胞周期蛋白D1/D2蛋白分别恢复到A375-WT细胞的89.5%和87.6%,细胞周期蛋白E表达未见 恢复,呈现生长增殖和克隆形成率的恢复并接近于A375-WT细胞. 结果提示,G6PD通 过细胞周期蛋白D1/D2调控人皮肤黑色素瘤A375细胞G1期向S期转换的进程,这为黑色 素瘤发病机制的研究提供了新的思路.  相似文献   

6.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthase (NOS). ADMA is eliminated largely by the action of dimethylarginine dimethylaminohydrolase1 (DDAH1). Decreased DDAH activity is found in several pathological conditions and is associated with increased risk of vascular disease. Overexpression of DDAH1 has been shown to augment endothelial proliferation and angiogenesis. To better understand the mechanism by which DDAH1 influences endothelial proliferation, this study examined the effect of DDAH1 deficiency on cell cycle progression and the expression of some cell cycle master regulatory proteins. DDAH1 KO decreased in vivo Matrigel angiogenesis and depressed endothelial repair in a mouse model of carotid artery wire injury. DDAH1 deficiency decreased VEGF expression in HUVEC and increased NF1 expression in both HUVEC and DDAH1 KO mice. The expression of active Ras could overcome the decreased VEGF expression caused by the DDAH1 depletion. The addition of VEGF and knockdown NF1 could both restore proliferation in cells with DDAH1 depletion. Flow cytometry analysis revealed that DDAH1 sRNAi knockdown in HUVEC caused G1 and G2/M arrest that was associated with decreased expression of CDC2, CDC25C, cyclin D1 and cyclin E. MEF cells from DDAH1 KO mice also demonstrated G2/M arrest that was associated with decreased cyclin D1 expression and Akt activity. Our findings indicate that DDAH1 exerts effects on cyclin D1 and cyclin E expression through multiple mechanisms, including VEGF, the NO/cGMP/PKG pathway, the Ras/PI3K/Akt pathway, and NF1 expression. Loss of DDAH1 effects on these pathways results in impaired endothelial cell proliferation and decreased angiogenesis. The findings provide background information that may be useful in the development of therapeutic strategies to manipulate DDAH1 expression in cardiovascular diseases or tumor angiogenesis.  相似文献   

7.
8.
Sparstolonin B (SsnB) is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. Angiogenesis, the process of new capillary formation from existing blood vessels, is dysregulated in many pathological disorders, including diabetic retinopathy, tumor growth, and atherosclerosis. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner. Microarray experiments with human umbilical vein endothelial cells (HUVECs) and human coronary artery endothelial cells (HCAECs) demonstrated differential expression of several hundred genes in response to SsnB exposure (916 and 356 genes, respectively, with fold change ≥2, p<0.05, unpaired t-test). Microarray data from both cell types showed significant overlap, including genes associated with cell proliferation and cell cycle. Flow cytometric cell cycle analysis of HUVECs treated with SsnB showed an increase of cells in the G1 phase and a decrease of cells in the S phase. Cyclin E2 (CCNE2) and Cell division cycle 6 (CDC6) are regulatory proteins that control cell cycle progression through the G1/S checkpoint. Both CCNE2 and CDC6 were downregulated in the microarray data. Real Time quantitative PCR confirmed that gene expression of CCNE2 and CDC6 in HUVECs was downregulated after SsnB exposure, to 64% and 35% of controls, respectively. The data suggest that SsnB may exert its anti-angiogenic properties in part by downregulating CCNE2 and CDC6, halting progression through the G1/S checkpoint. In the chick chorioallantoic membrane (CAM) assay, SsnB caused significant reduction in capillary length and branching number relative to the vehicle control group. Overall, SsnB caused a significant reduction in angiogenesis (ANOVA, p<0.05), demonstrating its ex vivo efficacy.  相似文献   

9.
The mechanism by which cyclin-dependent kinase 4 (CDK4) regulates cell cycle progression is not entirely clear. Cyclin D/CDK4 appears to initiate phosphorylation of retinoblastoma protein (Rb) leading to inactivation of the S-phase-inhibitory action of Rb. However, cyclin D/CDK4 has been postulated to act in a noncatalytic manner to regulate the cyclin E/CDK2-inhibitory activity of p27(Kip1) by sequestration. In this study we investigated the roles of CDK4 in cell cycle regulation by targeted disruption of the mouse CDK4 gene. CDK4(-/-) mice survived embryogenesis and showed growth retardation and reproductive dysfunction associated with hypoplastic seminiferous tubules in the testis and perturbed corpus luteum formation in the ovary. These phenotypes appear to be opposite to those of p27-deficient mice such as gigantism and gonadal hyperplasia. A majority of CDK4(-/-) mice developed diabetes mellitus by 6 weeks, associated with degeneration of pancreatic islets. Fibroblasts from CDK4(-/-) mouse embryos proliferated similarly to wild-type embryonic fibroblasts under conditions that promote continuous growth. However, quiescent CDK4(-/-) fibroblasts exhibited a substantial ( approximately 6-h) delay in S-phase entry after serum stimulation. This cell cycle perturbation by CDK4 disruption was associated with increased binding of p27 to cyclin E/CDK2 and diminished activation of CDK2 accompanied by impaired Rb phosphorylation. Importantly, fibroblasts from CDK4(-/-) p27(-/-) embryos displayed partially restored kinetics of the G(0)-S transition, indicating the significance of the sequestration of p27 by CDK4. These results suggest that at least part of CDK4's participation in the rate-limiting mechanism for the G(0)-S transition consists of controlling p27 activity.  相似文献   

10.
p27Kip1 is a cyclin-dependent kinase inhibitor that plays a critical role in regulating G1/S transition, and whose activity is, in part, regulated through interactions with D-type cyclins. We have generated the BD1-9 cell line, a BaF3 pro-B cells derivative in which cyclin D1 can be induced rapidly and reversibly by ponasterone A. The induction of cyclin D1 expression leads to a targeted p27Kip1 accumulation in both cytoplasmic and nuclear compartments. But, only the p27Kip1 form phosphorylated on serine 10 (pSer10-p27Kip1) accumulates in BD1-9 cells. We found that the binding of cyclin D1 and pSer10-p27Kip1 prevents p27Kip1 degradation by the cytoplasmic Kip1 ubiquitylation-promoting complex (KPC) proteosomic pathway. Importantly, the nuclear CDK2 activity which is crucial for G1/S transition is not altered by p27Kip1 increase. Using siRNA techniques, we revealed that p27Kip1 inhibition does not affect the distribution of BD1-9 cells in the different phases of the cell cycle. Our study demonstrates that aberrant cyclin D1 expression acts as a p27Kip1 trap in B lymphocytes but does not induce p27Kip1 relocation from the nucleus to the cytoplasm and does not modulate the G1/S transition. Since our cellular model mimics what observed in aggressive lymphomas, our data bring new insights into the understanding of their physiopathology.  相似文献   

11.
12.
When quiescent cells are stimulated to re-enter the cell cycle, growth factors are required only until the restriction point in G1 phase. After this point the cell no longer requires growth factors, proliferative signaling molecules, or even protein synthesis in order to initiate DNA synthesis, which starts several hours later. Consequently, understanding the molecular nature of the restriction point constitutes one of the major goals in studies of growth regulation. We recently demonstrated that p27Kip1 (p27) regulates passage through G1 phase in actively proliferating cultures, and initiated these studies to determine if it is also involved in passage through the restriction point following stimulation of quiescent cells. In support of this suggestion, we found that passage through the restriction point requires mitogen-dependent suppression of the high p27 levels normally present in quiescent cells. Moreover, as the culture progresses to mid-G1 phase, the proportion of cells that pass the restriction point is increased by artificial suppression of p27 levels, while this proportion is reduced by elevation of p27 levels. p27 performs this critical function by regulating the subsequent activating phosphorylation of cyclin dependent kinase (CDK)2, which we also show is necessary for and closely associated with the initiation of DNA synthesis. We conclude that the p27 expression level at mid-G1 phase determines when a cell passes through the restriction point, and does so by regulating subsequent CDK2 activation.  相似文献   

13.
14.
Terminal cell differentiation entails definitive withdrawal from the cell cycle. Although most of the cells of an adult mammal are terminally differentiated, the molecular mechanisms preserving the postmitotic state are insufficiently understood. Terminally differentiated skeletal muscle cells, or myotubes, are a prototypic terminally differentiated system. We previously identified a mid-G(1) block preventing myotubes from progressing beyond this point in the cell cycle. In this work, we set out to define the molecular basis of such a block. It is shown here that overexpression of highly active cyclin E and cdk2 in myotubes induces phosphorylation of pRb but cannot reactivate DNA synthesis, underscoring the tightness of cell cycle control in postmitotic cells. In contrast, forced expression of cyclin D1 and wild-type or dominant-negative cdk4 in myotubes restores physiological levels of cdk4 kinase activity, allowing progression through the cell cycle. Such reactivation occurs in myotubes derived from primary, as well as established, C2C12 myoblasts and is accompanied by impairment of muscle-specific gene expression. Other terminally differentiated systems as diverse as adipocytes and nerve cells are similarly reactivated. Thus, the present results indicate that the suppression of cyclin D1-associated kinase activity is of crucial importance for the maintenance of the postmitotic state in widely divergent terminally differentiated cell types.  相似文献   

15.
16.
Regulation of Exit from Quiescence by p27 and Cyclin D1-CDK4   总被引:4,自引:9,他引:4       下载免费PDF全文
The synthesis of cyclin D1 and its assembly with cyclin-dependent kinase 4 (CDK4) to form an active complex is a rate-limiting step in progression through the G1 phase of the cell cycle. Using an activated allele of mitogen-activated protein kinase kinase 1 (MEK1), we show that this kinase plays a significant role in positively regulating the expression of cyclin D1. This was found both in quiescent serum-starved cells and in cells expressing dominant-negative Ras. Despite the observation that cyclin D1 is a target of MEK1, in cycling cells, activated MEK1, but not cyclin D1, is capable of overcoming a G1 arrest induced by Ras inactivation. Either wild-type or catalytically inactive CDK4 cooperates with cyclin D1 in reversing the G1 arrest induced by inhibition of Ras activity. In quiescent NIH 3T3 cells expressing either ectopic cyclin D1 or activated MEK1, cyclin D1 is able to efficiently associate with CDK4; however, the complex is inactive. A significant percentage of the cyclin D1-CDK4 complexes are associated with p27 in serum-starved activated MEK1 or cyclin D1 cell lines. Reduction of p27 levels by expression of antisense p27 allows for S-phase entry from quiescence in NIH 3T3 cells expressing ectopic cyclin D1, but not in parental cells.  相似文献   

17.
Cyclin/cyclin-dependent kinases (Cdks) are critical protein kinases in regulating cell cycle progression. Among them, cyclin D1/Cdk4 exerts its function mainly in the G1 phase. By using the tandem affinity purification tag approach, we identified a set of proteins interacting with Cdk4, including NDR1/2. Interestingly, confirming the interactions between NDR1/2 and cyclin D1/Cdk4, we observed that NDR1/2 interacted with cyclin D1 independent of Cdk4, but NDR1/2 and cyclin D1/Cdk4 did not phosphorylate each other. In addition, we found that NDR1/2 did not affect the kinase activity of cyclin D1/Cdk4 upon phosphorylation of GST-Rb. However, cyclin D1 but not Cdk4 promoted the kinase activity of NDR1/2. We also demonstrated that cyclin D1 K112E, which could not bind Cdk4, enhanced the kinase activity of NDR1/2. To test whether cyclin D1 promotes G1/S transition though enhancing NDR1/2 kinase activity, we performed flow cytometry analysis using cyclin D1 and cyclin D1 K112E Tet-On inducible cell lines. The data show that both cyclin D1 and cyclin D1 K112E promoted G1/S transition. Importantly, knockdown of NDR1/2 almost completely abolished the function of cyclin D1 K112E in promoting G1/S transition. Consistently, we found that the protein level of p21 was reduced in cells overexpressing cyclin D1 K112E but not when NDR1/2 was knocked down. Taken together, these results reveal a novel function of cyclin D1 in promoting cell cycle progression by enhancing NDR kinase activity independent of Cdk4.  相似文献   

18.
Epidermal growth factor (EGF)-induced proliferation of corneal epithelial cells contributes to its renewal, which maintains the protective and refractive properties of the cornea. This study characterized in human corneal epithelial cells (HCEC) the role of the potassium–chloride cotransporter (KCC) in mediating (i) EGF-induced mitogen-activated protein kinase (MAPK) pathway activation; (ii) increases in cell cycle progression; and (iii) proliferation. The KCC inhibitor [(dihydroindenyl)oxy] alkanoic acid (DIOA) and KCC activator N-ethylmaleimide (NEM), suppressed and enhanced EGF-induced p44/42MAPK activation, respectively. Such selective modulation was mirrored by corresponding changes in cell proliferation and shifts in cell cycle distribution. DIOA induced a 20% increase in G0/G1-phase cell population, whereas NEM induced a 22% increase in the proportion of cells in the G2/M-phase and accelerated the transition from G0/G1-phase to the S-phase. Associated with these changes, KCC1 content in a plasma membrane enriched fraction increased by 300%. Alterations in regulatory volume capacity were associated with corresponding changes in both KCC1 membrane content and activity. These results indicate that EGF-induced increases in KCC1 activity and content modulate cell volume changes required for (i) activation of the p44/42MAPK signaling pathway, (ii) cell cycle progression, and (iii) increases in cell proliferation.  相似文献   

19.
Leucine‐rich repeats and WD repeat domain containing protein 1 (LRWD1) is a testis‐specific protein that mainly expressed in the sperm neck where centrosome is located. By using microarray analysis, LRWD1 is identified as a putative gene that involved in spermatogenesis. However, its role in human male germ cell development has not been extensively studied. When checking in the semen of patients with asthenozoospermia, teratozoospermia, and asthenoteratozoospermia, the level of LRWD1 in the sperm neck was significantly reduced with a defective neck or tail. When checking the sub‐cellular localization of LRWD1 in the cells, we found that LRWD1 resided in the centrosome and its centrosomal residency was independent of microtubule transportation in NT2/D1, the human testicular embryonic carcinoma, cell line. Depletion of LRWD1 did not induce centrosome re‐duplication but inhibited microtubule nucleation. In addition, the G1 arrest were observed in LRWD1 deficient NT2/D1 cells. Upon LRWD1 depletion, the levels of cyclin E, A, and phosphorylated CDK2, were reduced. Overexpression of LRWD1 promoted cell proliferation in NT2/D1, HeLa, and 239T cell lines. In addition, we also observed that autophagy was activated in LRWD1 deficient cells and inhibition of autophagy by chloroquine or bafilomycin A1 promoted cell death when LRWD1 was depleted. Thus, we found a novel function of LRWD1 in controlling microtubule nucleation and cell cycle progression in the human testicular embryonic carcinoma cells. J. Cell. Biochem. 119: 314–326, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
We investigated the status and the regulation of the cyclin-dependent kinases (CDK) inhibitor p27(Kip1) in a choroidal melanoma tumor-derived cell line (OCM-1). By contrast to normal choroidal melanocytes, the expression level of p27(Kip1) was low in these cells and the mitogen-activated protein (MAP) kinase pathway was constitutively activated. Genetic or chemical inhibition of this pathway induced p27(Kip1) accumulation, whereas MAP kinase reactivation triggered a down-regulation of p27(Kip1) that could be partially reversed by calpain inhibitors. In good accordance, ectopic expression of the cellular calpain inhibitor calpastatin led to an increase of endogenous p27(Kip1) expression. In vitro, p27(Kip1) was degraded by calpains, and OCM-1 cell extracts contained a calcium-dependent p27(Kip1) degradation activity. MAP kinase inhibition partially inhibited both calpain activity and calcium-dependent p27(Kip1) degradation by cellular extracts. Immunofluorescence labeling and subcellular fractionation revealed that p27(Kip1) was in part localized in the cytoplasmic compartment of OCM-1 cells but not of melanocytes, and accumulated into the nucleus upon MAP kinase inhibition. MAP kinase activation triggered a cytoplasmic translocation of the protein, as well as a change in its phosphorylation status. This CRM-1-dependent cytoplasmic translocation was necessary for MAP kinase- and calpain-dependent degradation. Taken together, these data suggest that in tumor-derived cells, p27(Kip1) could be degraded by calpains through a MAP kinase-dependent process, and that abnormal cytoplasmic localization of the protein, probably linked to modifications of its phosphorylation state, could be involved in this alternative mechanism of degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号