首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In chloroplasts and bacteria, the Tat (twin-arginine translocation) system is engaged in transporting folded passenger proteins across the thylakoid and cytoplasmic membranes, respectively. To date, three membrane proteins (TatA, TatB, and TatC) have been identified to be essential for Tat-dependent protein translocation in the plant system, whereas soluble factors seem not to be required. In contrast, in the bacterial system, several cytosolic chaperones were described to be involved in Tat transport processes. Therefore, we have examined whether stromal or peripherally associated membrane proteins also play a role in Tat transport across the thylakoid membrane. Analyzing both authentic precursors as well as the chimeric 16/23 protein, which allows us to study each step of the translocation process individually, we demonstrate that a soluble form of TatA is present in the chloroplast stroma, which significantly improves the efficiency of Tat-dependent protein transport. Furthermore, this soluble TatA is able to reconstitute the Tat transport properties of thylakoid membranes that are transport-incompetent due to extraction with solutions of chaotropic salts.  相似文献   

2.
During thylakoid transport of the chimeric precursor protein 16/23 which takes place by the twin arginine translocation (TAT) (Deltaph)-dependent pathway, two distinct translocation intermediates can be identified which represent successive steps in the translocation process. Both intermediates are partially inserted into the thylakoid membrane and can be distinguished by specific degradation fragments occurring after thermolysin treatment of the thylakoids. While the formation of the early translocation intermediate does not depend on a functional TAT translocation machinery, the appearance of the late intermediate is strictly coupled to the Deltaph-dependent transport of the 16/23 chimera. Accordingly, this translocation intermediate is found associated with two distinct complexes in the thylakoid membrane having apparent molecular masses of approximately 560 and 620 kDa, respectively.  相似文献   

3.
We have studied the membrane transport of the chimeric precursor protein 16/33, which is composed of the Tat1-specific transport signal of OEC16 and the Sec passenger protein OEC33, both subunits of the oxygen-evolving system associated with photosystem II. Protein transport experiments performed with isolated pea thylakoids show that the 16/33 chimera is transported in a strictly Tat-dependent manner into the thylakoid vesicles yielding mature OEC33 (mOEC33) in two different topologies. One fraction accumulates in the thylakoid lumen and is thus resistant to externally added protease. A second fraction is arrested during transport in an N-in/C-out topology within the membrane. Chase experiments demonstrate that this membrane-arrested mOEC33 moiety does not represent a translocation intermediate but instead an alternative end product of the transport process. Transport arrest of mOEC33, which is embedded in the membrane with a mildly hydrophobic protein segment, requires more than 26 additional and predominantly hydrophilic residues C-terminal of the membrane-embedded segment. Furthermore, it is stimulated by mutations which potentially affect the conformation of mOEC33 suggesting that at least partial folding of the passenger protein is required for complete membrane translocation.  相似文献   

4.
Cytosolically synthesized thylakoid proteins must be translocated across the chloroplast envelope membranes, traverse the stroma, and then be translocated into or across the thylakoid membrane. Protein transport across the envelope requires ATP hydrolysis but not electrical or proton gradients. The energy requirements for the thylakoid translocation step were studied here for the light-harvesting chlorophyll a/b protein (LHCP), an integral membrane protein, and for several thylakoid lumen-resident proteins: plastocyanin and OE33, OE23, and OE17 (the 33-, 23-, and 17-kDa subunits of the oxygen-evolving complex, respectively). Dissipation of the thylakoid protonmotive force during an in organello protein import assay partially inhibited the thylakoid localization of LHCP and OE33, totally inhibited localization of OE23 and OE17, and had no effect on localization of plastocyanin. We used reconstitution assays for LHCP insertion and for OE23 and OE17 transport into isolated thylakoids to investigate the energy requirements in detail. The results indicated that LHCP insertion absolutely requires ATP hydrolysis and is enhanced by a transthylakoid delta pH and that transport of OE23 and OE17 is absolutely dependent upon a delta pH. Surprisingly, OE23 and OE17 transport occurred maximally in the complete absence of ATP. These results establish the thylakoid membrane as the only membrane system in which a delta pH can provide all of the energy required to translocate proteins across the bilayer. They also demonstrate that the energy requirements for integration into or translocation across the thylakoid membranes are protein-specific.  相似文献   

5.
The twin-arginine translocation (Tat) pathway, one of four protein transport pathways operating at the thylakoid membrane of chloroplasts, shows remarkable substrate flexibility. Here, we have analyzed the thylakoid transport of chimeric tandem substrates that are composed of two different passenger proteins fused to a single Tat transport signal. The chimera 23/23-EGFP in which the reporter protein EGFP is connected to the C-terminus of the OEC23 precursor shows that a single Tat transport signal is sufficient to mediate transport of two distinct passenger proteins in a row. Replacing the transit peptide of OEC23 in 23/23-EGFP by its homolog from OEC16 yields the chimera 16/23-EGFP, which can likewise be fully translocated by the Tat pathway across the thylakoid membrane. However, transport of 16/23-EGFP is retarded at specific steps in the transport process leading to the temporary and consecutive accumulation of three translocation intermediates with distinct membrane topology. They are associated with two oligomeric membrane complexes presumably representing TatBC-receptor complexes. The composition of the translocation intermediates as determined by immunoprecipitation experiments suggests that the two passenger proteins are translocated in a stepwise manner across the membrane.  相似文献   

6.
The Rieske Fe/S protein, a nuclear-encoded subunit of the cytochrome b(6)/f complex in chloroplasts, is retarded in the stromal space after import into the chloroplast and only slowly translocated further into the thylakoid membrane system. As shown by the sensitivity to nigericin and to specific competitor proteins, thylakoid transport takes place by the DeltapH-dependent TAT pathway. The Rieske protein is an untypical TAT substrate, however. It is only the second integral membrane protein shown to utilize this pathway, and it is the first authentic substrate without a cleavable signal peptide. Transport is instead mediated by the NH(2)-terminal membrane anchor, which lacks, however, the twin-arginine motif indicative of DeltapH/TAT-dependent transport signals. Furthermore, transport is affected by sodium azide as well as by competitor proteins for the Sec pathway in chloroplasts, demonstrating for the first time some cross-talk of the two pathways. This might take place in the stroma where the Rieske protein accumulates after import in several complexes of high molecular mass, among which the cpn60 complex is the most prominent. These untypical features suggest that the Rieske protein represents an intermediate or early state in the evolution of the thylakoidal protein transport pathways.  相似文献   

7.
The twin-arginine translocation (Tat) system mediates the transport of proteins across the bacterial plasma membrane and chloroplast thylakoid membrane. Operating in parallel with Sec-type systems in these membranes, the Tat system is completely different in both structural and mechanistic terms, and is uniquely able to catalyze the translocation of fully folded proteins across coupled membranes. TatC is an essential, multispanning component that has been proposed to form part of the binding site for substrate precursor proteins. In this study we have tested the importance of conserved residues on the periplasmic and cytoplasmic face of the Escherichia coli protein. We find that many of the mutations on the cytoplasmic face have little or no effect. However, substitution at several positions in the extreme N-terminal cytoplasmic region or the predicted first cytoplasmic loop lead to a significant or complete loss of Tat-dependent export. The mutated strains are unable to grow anaerobically on trimethylamine N-oxide minimal media and are unable to export trimethylamine-N-oxide reductase (TorA). The same mutants are completely unable to export a chimeric protein, comprising the TorA signal peptide linked to green fluorescent protein, indicating that translocation is blocked rather than cofactor insertion into the TorA mature protein. The data point to two essential cytoplasmic domains on the TatC protein that are essential for export.  相似文献   

8.
Subunits CFo-I and CFo-II of ATP synthase in chloroplast thylakoid membranes are two structurally and functionally closely related proteins of bitopic membrane topology which evolved from a common ancestral gene. In higher plants, CFo-I still originates in plastid chromosomes (gene: atpF), while the gene for CFo-II (atpG) was phylogenetically transferred to the nucleus. This gene transfer was accompanied by the reorganization of the topogenic signals and the mechanism of membrane insertion. CFo-I is capable of integrating correctly as the mature protein into the thylakoid membrane, whereas membrane insertion of CFo-II strictly depends on a hydrophobic targeting signal in the transit peptide. This requirement is caused by three negatively charged residues at the N-terminus of mature CFo-II which are lacking from CFo-I and which have apparently been added to the protein only after gene transfer has occurred. Accordingly, the CFo-II transit peptide is structurally and functionally equivalent to typical bipartite transit peptides, capable of also translocating hydrophilic lumenal proteins across the thylakoid membrane. In this case, transport takes place by the Sec-dependent pathway, despite the fact that membrane integration of CFo-II is a Sec-independent, and presumably spontaneous, process.  相似文献   

9.
SecY is a component of the protein-conducting channel for protein transport across the cytoplasmic membrane of prokaryotes. It is intimately associated with a second integral membrane protein, SecE, and together with SecA forms the minimal core of the preprotein translocase. A chloroplast homologue of SecY (cpSecY) has previously been identified and determined to be localized to the thylakoid membrane. In the present work, we demonstrate that a SecE homologue is localized to the thylakoid membrane, where it forms a complex with cpSecY. Digitonin solubilization of thylakoid membranes releases the SecY/E complex in a 180-kDa form, indicating that other components are present and/or the complex is a higher order oligomer of the cpSecY/E dimer. To test whether cpSecY forms the protein-conducting channel of the thylakoid membrane, translocation assays were conducted with the SecA-dependent substrate OE33 and the SecA-independent substrate OE23, in the presence and absence of antibodies raised against cpSecY. The antibodies inhibited translocation of OE33 but not OE23, indicating that cpSecY comprises the protein-conducting channel used in the SecA-dependent pathway, whereas a distinct protein conducting channel is used to translocate OE23.  相似文献   

10.
The twin arginine protein transport (Tat) system translocates folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of chloroplasts. In Escherichia coli, TatA, TatB, and TatC are essential components of the machinery. A complex of TatB and TatC acts as the substrate receptor, whereas TatA is proposed to form the Tat transport channel. TatA and TatB are related proteins that comprise an N-terminal transmembrane helix and an adjacent amphipathic helix. Previous studies addressing the topological organization of TatA have given conflicting results. In this study, we have addressed the topological arrangement of TatA and TatB in intact cells by labeling of engineered cysteine residues with the membrane-impermeable thiol reagent methoxypolyethylene glycol maleimide. Our results show that TatA and TatB share an N-out, C-in topology, with no evidence that the amphipathic helices of either protein are exposed at the periplasmic side of the membrane. We further show that the N-out, C-in topology of TatA is fixed and is not affected by the absence of other Tat components or by the overproduction of a Tat substrate. These data indicate that topological reorganization of TatA is unlikely to accompany Tat-dependent protein transport.  相似文献   

11.
The Tat (twin-arginine protein translocation) system initially discovered in the thylakoid membrane of chloroplasts has been described recently for a variety of eubacterial organisms. Although in Escherichia coli four Tat proteins with calculated membrane spanning domains have been demonstrated to mediate Tat-dependent transport, a specific transport system for twin-arginine signal peptide containing phosphodiesterase PhoD of Bacillus subtilis consists of one TatA/TatC (TatAd/TatCd) pair of proteins. Here, we show that TatAd was found beside its membrane-integrated localization in the cytosol were it interacted with prePhoD. prePhoD was efficiently co-immunoprecipitated by TatAd. Inefficient co-immunoprecipitation of mature PhoD and missing interaction to Sec-dependent and cytosolic peptides by TatAd demonstrated a particular role of the twin-arginine signal peptide for this interaction. Affinity of prePhoD to TatAd was interfered by peptides containing the twin-arginine motif but remained active when the arginine residues were substituted. The selective binding of TatAd to peptides derived from the signal peptide of PhoD elucidated the function of the twin-arginine motif as a target site for pre-protein TatAd interaction. Substitution of the binding motif demonstrated the pivotal role of basic amino acid residues for TatA binding. These features suggest that TatA interacts prior to membrane integration with its pre-protein substrate and could therefore assist targeting of twin-arginine pre-proteins.  相似文献   

12.
Most integral membrane proteins are cotranslationally inserted into the lipid bilayer. In prokaryotes, membrane insertion of the nascent chain takes place at the plasma membrane, whereas in eukaryotes insertion takes place into the endoplasmatic reticulum. In both kingdoms of life, however, the same membrane that acquaints the newly born membrane protein also synthesizes the bilayer lipids and thus ensures the balanced growth of the membrane as a whole. Recent evidence indicates that the lipid composition of the host membrane can determine the fate of the newborn membrane protein, as it can affect (1) the efficiency of translocation, (2) the topology of the resulting membrane protein, (3) its stability, (4) its assembly into oligomeric complexes, (5) its transport and sorting along the secretory pathway, and (6) its enzymatic activity. The lipid composition of the membrane thus can affect the biogenesis and function of integral membrane proteins at multiple steps along its biogenetic pathway. While understanding this interdependence between bilayer lipids and protein biogenesis is interesting in its own right, careful consideration of a potential host’s membrane lipid composition may also allow optimization of the yield and activity of membrane proteins that are expressed in a heterologous organism. Here, we review and discuss some examples that illustrate the interdependence between bilayer lipids and the biogenesis of integral membrane proteins.  相似文献   

13.
VIPP1 has been shown to be required for the proper formation of thylakoid membranes. However, studies on VIPP1 itself, as well as on PspA, its bacterial homolog, suggests that this protein may be involved in a number of additional functions, including protein translocation. The role of VIPP1 in protein translocation in the chloroplast has not been investigated. To this end, we conducted in vitro thylakoid protein transport assays to look at the effect of VIPP1 on the cpTat pathway, which is one of three translocation pathways found in both the chloroplast and its bacterial progenitor. We found that VIPP1 does indeed enhance protein transport through the cpTat pathway by up to 100%. The VIPP1 effect on cpTat activity occurs without interacting with the substrates or components of the translocon, and does not alter the energy potentials driving this translocation pathway. Instead, VIPP1 greatly enhances the amount of substrate bound productively to the thylakoids. Moreover, the presence of increasing VIPP1 concentrations in the reactions resulted in greater interactions between thylakoid membranes. Taken together, these results demonstrate a stimulatory role for VIPP1 in cpTat transport by enhancement of substrate binding, probably to the membrane lipid regions of the thylakoid. We propose a model in which VIPP1 facilitates reorganization of the thylakoid structure to increase substrate access to productive binding regions of the membrane as an early step in the cpTat pathway.  相似文献   

14.
The major light-harvesting chlorophyll a/b-binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+-complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid.  相似文献   

15.
E Bogsch  S Brink    C Robinson 《The EMBO journal》1997,16(13):3851-3859
Cleavable N-terminal targeting signals direct the translocation of lumenal proteins across the chloroplast thylakoid membrane by either a Sec-type or delta pH-driven protein translocase. The targeting signals specify choice of translocation pathway, yet all resemble typical bacterial 'signal' peptides in possessing a charged N-terminus (N-domain), hydrophobic core region (H-domain) and more polar C-terminal region (C-domain). We have previously shown that a twin-arginine motif in the N-domain is essential for targeting by the delta pH-dependent pathway, but it has remained unclear why targeting signals for this system (transfer peptides) are not recognized by the Sec apparatus. We show here that the conserved charge distribution around the H-domain in the 23K transfer peptide (twin-Arg in the N-domain, Lys in the C-domain) constitutes a 'Sec-avoidance' signal. The C-domain Lys, while not important for delta pH-dependent targeting, is the only barrier to Sec-dependent translocation; its removal generates an apparently perfect signal peptide. Conversely, insertion of twin-Arg into the N-domain of a Sec substrate has little effect, as has insertion of a C-domain Lys, but the combined substitutions almost totally block transport. We also show that the 23K mature protein is incapable of being targeted by the Sec pathway, and it is proposed that the role of the Sec-avoidance motif in the transfer peptide is to prevent futile interactions with the Sec apparatus.  相似文献   

16.
Protein translocases have been characterised in several membrane systems and the translocation mechanisms have been shown to differ in critical respects. Nevertheless, the majority were believed to transport proteins only in a largely unfolded state, and this widespread characteristic was viewed as a likely evolutionary effort to minimise the diameter of translocation pore required. Within the last few years, however, studies on the chloroplast thylakoid membrane have revealed a novel class of protein translocase which possesses the apparently unique ability to transport fully-folded proteins across a tightly sealed energy-transducing membrane. A related system, (the twin-arginine translocation, or Tat system) has now been characterised in the Escherichia coli plasma membrane and considerations of its substrate specificity again point to its involvement in the transport of folded proteins. The emerging data suggest a critical involvement in many membranes for the biogenesis of two types of globular protein: those that are obliged to fold prior to translocation, and those that fold too tightly or rapidly for other types of protein translocase to handle.  相似文献   

17.
The twin-arginine translocation (Tat) pathway can transport folded and co-factor-containing cargo proteins over bacterial cytoplasmic membranes. Functional Tat machinery components, a folded state of the cargo protein and correct co-factor insertion in the cargo protein are generally considered as prerequisites for successful translocation. The present studies were aimed at a dissection of these requirements with regard to the Rieske iron-sulfur protein QcrA of Bacillus subtilis. Notably, QcrA is a component of the cytochrome bc1 complex, which is conserved from bacteria to man. Single amino acid substitutions were introduced into the Rieske domain of QcrA to prevent either co-factor binding or disulfide bond formation. Both types of mutations precluded QcrA translocation. Importantly, a proofreading hierarchy was uncovered, where a QcrA mutant defective in disulfide bonding was quickly degraded, whereas mutant QcrA proteins defective in co-factor binding accumulated in the cytoplasm and membrane. Altogether, these are the first studies on Tat-dependent protein translocation where both oxidative folding and co-factor attachment have been addressed in a single native molecule.  相似文献   

18.
The bacterial twin-arginine translocation (Tat) pathway has been recently described for PhoD of Bacillus subtilis, a phosphodiesterase containing a twin-arginine signal peptide. The expression of phoD is co-regulated with the expression of tatA(d) and tatC(d) genes localized downstream of phoD. To characterize the specificity of PhoD transport further, translocation of PhoD was investigated in Escherichia coli. By using gene fusions, we analyzed the particular role of the signal peptide and the mature region of PhoD in canalizing the transport route. A hybrid protein consisting of the signal peptide of beta-lactamase and mature PhoD was transported in a Sec-dependent manner indicating that the mature part of PhoD does not contain information canalizing the selected translocation route. Pre-PhoD, as well as a fusion protein consisting of the signal peptide of PhoD (SP(PhoD)) and beta-galactosidase (LacZ), remained cytosolic in the E. coli. Thus, SP(PhoD) is not recognized by E. coli transport systems. Co-expression of B. subtilis tatA(d)/C(d) genes resulted in the processing of SP(PhoD)-LacZ and periplasmic localization of LacZ illustrating a close substrate specificity of the TatA(d)/C(d) transport system. While blockage of the Sec-dependent transport did not affect the localization of SP(PhoD)-LacZ, translocation and processing was dependent on the pH gradient of the cytosolic membrane. Thus, the minimal requirement of a functional Tat-dependent protein translocation system consists of a twin-arginine signal peptide-containing Tat substrate, its specific TatA/C proteins, and the pH gradient across the cytosolic membrane.  相似文献   

19.
A group of bacterial exported proteins are synthesized with N-terminal signal peptides containing a SRRxFLK 'twin-arginine' amino acid motif. Proteins bearing twin-arginine signal peptides are targeted post-translationally to the twin-arginine translocation (Tat) system which transports folded substrates across the inner membrane. In Escherichia coli, most integral inner membrane proteins are assembled by a co-translational process directed by SRP/FtsY, the SecYEG translocase, and YidC. In this work we define a novel class of integral membrane proteins assembled by a Tat-dependent mechanism. We show that at least five E. coli Tat substrate proteins contain hydrophobic C-terminal transmembrane helices (or 'C-tails'). Fusions between the identified transmembrane C-tails and the exclusively Tat-dependent reporter proteins TorA and SufI render the resultant chimeras membrane-bound. Export-linked signal peptide processing and membrane integration of the chimeras is shown to be both Tat-dependent and YidC-independent. It is proposed that the mechanism of membrane integration of proteins by the Tat system is fundamentally distinct from that employed for other bacterial inner membrane proteins.  相似文献   

20.
The transport of proteins binding redox cofactors across a biological membrane is complicated by the fact that insertion of the redox cofactor is often a cytoplasmic process. These cytoplasmically assembled redox proteins must thus be transported in partially or completely folded form. The need for a special transport system for redox proteins was first recognized for periplasmic hydrogenases in gram-negative bacteria. These enzymes, which catalyze the reaction H2 <--> 2H+ + 2e, are composed of a large and a small subunit. Only the small subunit has an unusually long signal sequence of 30-50 amino acid residues, characterized by a conserved motif (S/T)-R-R-x-F-L-K at the N-terminus. This sequence directs export of the large and small subunit complex to the periplasm. Sequencing of microbial genes and genomes has shown that signal sequences with this conserved motif, now referred to as twin-arginine leaders, occur ubiquitously and export different classes of redox proteins, containing iron sulfur clusters, molybdopterin cofactors, polynuclear copper sites or flavin adenine dinucleotide. Mutations in an Escherichia coli operon referred to as mtt (membrane targeting and translocation) or tat (twin arginine translocation) are pleiotropic, i.e. these prevent the expression of a variety of periplasmic oxido-reductases in functional form. The Mtt or Tat pathway is distinct from the well-known Sec pathway and occurs ubiquitously in prokaryotes. The fact that its component proteins share sequence homology with proteins of the delta pH pathway for protein transport associated with chloroplast thylakoid assembly, illustrates the universal nature of this novel protein translocation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号