首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerber K  Wimmer E  Paul AV 《Journal of virology》2001,75(22):10979-10990
We have previously shown that the RNA polymerase 3D(pol) of human rhinovirus 2 (HRV2) catalyzes the covalent linkage of UMP to the terminal protein (VPg) using poly(A) as a template (K. Gerber, E. Wimmer, and A. V. Paul, J. Virol. 75:10969-10978, 2001). The products of this in vitro reaction are VPgpU, VPgpUpU, and VPg-poly(U), the 5' end of minus-strand RNA. In the present study we used an assay system developed for poliovirus 3D(pol) (A. V. Paul, E. Rieder, D. W. Kim, J. H. van Boom, and E. Wimmer, J. Virol. 74: 10359-10370, 2000) to search for a viral sequence or structure in HRV2 RNA that would provide specificity to this reaction. We now show that a small hairpin in HRV2 RNA [cre(2A)], located in the coding sequence of 2A(pro), serves as the primary template for HRV2 3D(pol) in the uridylylation of HRV2 VPg, yielding VPgpU and VPgpUpU. The in vitro reaction is strongly stimulated by the addition of purified HRV2 3CD(pro). Our analyses suggest that HRV2 3D(pol) uses a "slide-back" mechanism during synthesis of the VPg-linked precursors. The corresponding cis- replicating RNA elements in the 2C(ATPase) coding region of poliovirus type 1 Mahoney (I. Goodfellow, Y. Chaudhry, A. Richardson, J. Meredith, J. W. Almond, W. Barclay, and D. J. Evans, J. Virol. 74:4590-4600, 2000) and VP1 of HRV14 (K. L. McKnight and S. M. Lemon, RNA 4:1569-1584, 1998) can be functionally exchanged in the assay with cre(2A) of HRV2. Mutations of either the first or the second A in the conserved A(1)A(2)A(3)CA sequence in the loop of HRV2 cre(2A) abolished both viral growth and the RNA's ability to serve as a template in the in vitro VPg uridylylation reaction.  相似文献   

2.
3.
We have analyzed the divalent cation specificity of poliovirus RNA-dependent RNA polymerase, 3D(pol). The following preference was observed: Mn(2+) > Co(2+) > Ni(2+) > Fe(2+) > Mg(2+) > Ca(2+) > Cu(2+), and Zn(2+) was incapable of supporting 3D(pol)-catalyzed nucleotide incorporation. In the presence of Mn(2+), 3D(pol) activity was increased by greater than 10-fold relative to that in the presence of Mg(2+). Steady-state kinetic analysis revealed that the increased activity observed in the presence of Mn(2+) was due, primarily, to a reduction in the K(M) value for 3D(pol) binding to primer/template, without any significant effect on the K(M) value for nucleotide. The ability of 3D(pol) to catalyze RNA synthesis de novo was also stimulated approximately 10-fold by using Mn(2+), and the enzyme was now capable of also utilizing a DNA template for primer-independent RNA synthesis. Interestingly, the use of Mn(2+) as divalent cation permitted 3D(pol) activity to be monitored by following extension of 5'-(32)P-end-labeled, heteropolymeric RNA primer/templates. The kinetics of primer extension were biphasic because of the enzyme binding to primer/template in both possible orientations. When bound in the incorrect orientation, 3D(pol) was capable of efficient addition of nucleotides to the blunt-ended duplex; this activity was also apparent in the presence of Mg(2+). In the presence of Mn(2+), 3D(pol) efficiently utilized dNTPs, ddNTPs, and incorrect NTPs. On average, three incorrect nucleotides could be incorporated by 3D(pol). The ability of 3D(pol) to incorporate the correct dNTP, but not the correct ddNTP, was also observed in the presence of Mg(2+). Taken together, these results provide the first glimpse into the nucleotide specificity and fidelity of the poliovirus polymerase and suggest novel alternatives for the design of primer/templates to study the mechanism of 3D(pol)-catalyzed nucleotide incorporation.  相似文献   

4.
The first amino acid of "authentic" poliovirus RNA-dependent RNA polymerase, 3D(pol), is a glycine. As a result, production of 3D(pol) in Escherichia coli requires addition of an initiation codon; thus, a formylmethionine is added to the amino terminus. The formylmethionine should be removed by the combined action of a cellular deformylase and methionine aminopeptidase. However, high-level expression of 3D(pol) in E. coli yields enzyme with a heterogeneous amino terminus. To preclude this problem, we developed a new expression system for 3D(pol). This system exploits the observation that proteins fused to the carboxyl terminus of ubiquitin can be processed in E. coli to produce proteins with any amino acid as the first residue when expressed in the presence of a ubiquitin-specific, carboxy-terminal protease. By using this system, authentic 3D(pol) can be obtained in yields of 30-60 mg per liter of culture. While addition of a single glycine, alanine, serine, or valine to the amino terminus of 3D(pol) produced derivatives with a specific activity reduced by at least 25-fold relative to wild-type enzyme, addition of a methionine to the amino terminus resulted in some processing to yield enzyme with a glycine amino terminus. Addition of a hexahistidine tag to the carboxyl terminus of 3D(pol) had no deleterious effect on the activity of the enzyme. The utility of this expression system for production of other viral polymerases and accessory proteins is discussed.  相似文献   

5.
6.
Detailed studies of the kinetics and mechanism of nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus, 3D(pol), have been limited by the inability to assemble elongation complexes that permit activity to be monitored by extension of end-labeled primers. We have solved this problem by employing a short, symmetrical, heteropolymeric RNA primer-template that we refer to as "sym/sub." Formation of 3D(pol)-sym/sub complexes is slow owing to a slow rate of association (0.1 microM(-1) s(-1)) of 3D(pol) and sym/sub and a slow isomerization (0. 076 s(-1)) of the 3D(pol)-sym/sub complex that is a prerequisite for catalytic competence of this complex. Complex assembly is stoichiometric under conditions in which competing reactions, such as enzyme inactivation, are eliminated. Inactivation of 3D(pol) occurs at a maximal rate of 0.051 s(-1) at 22 degrees C in reaction buffer lacking nucleotide. At this temperature, ATP protects 3D(pol) against inactivation with a K(0.5) of 37 microM. Once formed, 3D(pol)-sym/sub elongation complexes are stable (t((1)/(2)) = 2 h at 22 degrees C) and appear to contain only a single polymerase monomer. In the presence of Mg(2+), AMP, 2'-dAMP, and 3'-dAMP are incorporated into sym/sub by 3D(pol) at rates of 72, 0.6, and 1 s(-1), respectively. After incorporation of AMP, 3D(pol)-sym/sub product complexes have a half-life of 8 h at 22 degrees C. The stability of 3D(pol)-sym/sub complexes is temperature-dependent. At 30 degrees C, there is a 2-8-fold decrease in complex stability. Complex dissociation is the rate-limiting step for primer utilization. 3D(pol) dissociates from the end of template at a rate 10-fold faster than from internal positions. The sym/sub system will facilitate mechanistic analysis of 3D(pol) and permit a direct kinetic and thermodynamic comparison of the RNA-dependent RNA polymerase to the other classes of nucleic acid polymerases.  相似文献   

7.
Properties of poliovirus RNA-dependent RNA polymerase (3Dpol) including optimal conditions for primer extension, processivity and the rate of dissociation from primer-template (koff) were examined in the presence and absence of viral protein 3AB. Primer-dependent polymerization was examined on templates of 407 or 1499 nt primed such that fully extended products would be 296 or 1388 nt, respectively. Maximal primer extension was achieved with low rNTP concentrations (50–100 µM) using pH 7 and low (<1 mM) MgCl2 and KCl (<20 mM) concentrations. However, high activity (about half maximal) was also observed with 500 µM rNTPs providing that higher MgCl2 levels (3–5 mM) were used. The enhancement observed with the former conditions appeared to result from a large increase in the initial level or active enzyme that associated with the primer. 3AB increased the number of extended primers at all conditions with no apparent change in processivity. The koff values for the polymerase bound to primer-template were 0.011 ± 0.005 and 0.037 ± 0.006 min–1 (average of four or more experiments ± SD) in the presence or absence of 3AB, respectively. The decrease in the presence of 3AB suggested an enhancement of polymerase binding or stability. However, binding was tight even without 3AB, consistent with the highly processive (at least several hundred nucleotides) nature of 3Dpol. The results support a mechanism whereby 3AB enhances the ability of 3Dpol to form a productive complex with the primer-template. Once formed, this complex is very stable resulting in highly processive synthesis.  相似文献   

8.
A new method for the purification of Q RNA-dependent RNA polymerase   总被引:14,自引:0,他引:14  
  相似文献   

9.
Two critical interactions within the poliovirus RNA replication complex are those of the RNA-dependent RNA polymerase 3D with the viral proteins 3AB and VPg. 3AB is a membrane-binding protein responsible for the localization of the polymerase to the membranous vesicles at which replication occurs. VPg (a peptide comprising the 3B region of 3AB) is the 22-residue soluble product of 3AB cleavage and serves as the protein primer for RNA replication. The detailed interactions of these proteins with the RNA-dependent RNA polymerase 3D were analyzed to elucidate the precise roles of 3AB and VPg in the viral RNA replication complex. Using a membrane-based pull-down assay, we have identified a binding "hot-spot" spanning residues 100 to 104 in the 3B (VPg) region of 3AB which plays a critical role in mediating the interaction of 3AB with the polymerase. Isothermal titration calorimetry shows that the interaction of VPg with 3D is enthalpically driven, with a dissociation constant of 11 microM. Mutational analyses of VPg indicate that a subset of the residues important for 3AB-3D binding are also important for VPg-3D binding. Two residues in particular, P14 and R17, were shown to be absolutely critical for the binding interaction. This work provides the direct characterization of two binding interactions critical for the replication of this important class of viruses and identifies a conserved polymerase binding sequence responsible for targeting the polymerase.  相似文献   

10.
Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn(2+) than in the presence of Mg(2+). When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a "copy-back" mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3' end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (>/=50 microM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.  相似文献   

11.
Arnold JJ  Cameron CE 《Biochemistry》2004,43(18):5126-5137
We have solved the complete kinetic mechanism for correct nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus, 3D(pol). The phosphoryl-transfer step is flanked by two isomerization steps. The first conformational change may be related to reorientation of the triphosphate moiety of the bound nucleotide, and the second conformational change may be translocation of the enzyme into position for the next round of nucleotide incorporation. The observed rate constant for nucleotide incorporation by 3D(pol) (86 s(-1)) is dictated by the rate constants for both the first conformational change (300 s(-1)) and phosphoryl transfer (520 s(-1)). Changes in the stability of the "activated" ternary complex correlate best with changes in the observed rate constant for incorporation resulting from modification of the nucleotide. With the exception of UTP, the K(d) values for nucleotides are at least 10-fold lower than the cellular concentration of the corresponding nucleotide. Our data predict that transition mutations should occur at a frequency of 1/15000, transversion mutations should occur at a frequency of less than 1/150000, and incorporation of a 2'-deoxyribonucleotide with a correct base should occur at a frequency 1/7500. Together, these data support the conclusion that 3D(pol) is actually as faithful as an exonuclease-deficient, replicative DNA polymerase. We discuss the implications of this work on the development of RNA-dependent RNA polymerase inhibitors for use as antiviral agents.  相似文献   

12.
Arnold JJ  Gohara DW  Cameron CE 《Biochemistry》2004,43(18):5138-5148
The use of Mn(2+) as the divalent cation cofactor in polymerase-catalyzed reactions instead of Mg(2+) often diminishes the stringency of substrate selection and incorporation fidelity. We have solved the complete kinetic mechanism for single nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus (3D(pol)) in the presence of Mn(2+). The steps employed during a single cycle of nucleotide incorporation are identical to those employed in the presence of Mg(2+) and include a conformational-change step after nucleotide binding to achieve catalytic competence of the polymerase-primer/template-nucleotide complex. In the presence of Mn(2+), the conformational-change step is the primary determinant of enzyme specificity, phosphoryl transfer appears as the sole rate-limiting step for nucleotide incorporation, and the rate of phosphoryl transfer is the same for all nucleotides: correct and incorrect. Because phosphoryl transfer is the rate-limiting step in the presence of Mn(2+), it was possible to determine that the maximal phosphorothioate effect in this system is in the range of 8-11. This information permitted further interrogation of the nucleotide-selection process in the presence of Mg(2+), highlighting the capacity of this cation to permit the enzyme to use the phosphoryl-transfer step for nucleotide selection. The inability of Mn(2+) to support a reduction in the efficiency of phosphoryl transfer when incorrect substrates are employed is the primary explanation for the loss of fidelity observed in the presence of this cofactor. We propose that the conformational change involves reorientation of the triphosphate moiety of the bound nucleotide into a conformation that permits binding of the second metal ion required for catalysis. In the presence of Mg(2+), this conformation requires interactions with the enzyme that permit a reduction in catalytic efficiency to occur during an attempt to incorporate an incorrect nucleotide. Adventitious interactions in the cofactor-binding site with bound Mn(2+) may diminish fidelity by compensating for interaction losses used to modulate catalytic efficiency when incorrect nucleotides are bound in the presence of Mg(2+).  相似文献   

13.
Biochemical characterization of enterovirus 71 3D RNA polymerase   总被引:1,自引:0,他引:1  
  相似文献   

14.
NS5B is the RNA-dependent RNA polymerase responsible for replicating hepatitis C virus (HCV) genomic RNA. Despite more than a decade of work, the formation of a highly active NS5B polymerase·RNA complex suitable for mechanistic and structural studies has remained elusive. Here, we report that through a novel way of optimizing initiation conditions, we were able to generate a productive NS5B·primer·template elongation complex stalled after formation of a 9-nucleotide primer. In contrast to previous reports of very low proportions of active NS5B, we observed that under optimized conditions up to 65% of NS5B could be converted into active elongation complexes. The elongation complex was extremely stable, allowing purification away from excess nucleotide and abortive initiation products so that the purified complex was suitable for pre-steady-state kinetic analyses of polymerase activity. Single turnover kinetic studies showed that CTP is incorporated with apparent K(d) and k(pol) values of 39 ± 3 μM and 16 ± 1 s(-1), respectively, giving a specificity constant of k(pol)/K(d) of 0.41 μM(-1) s(-1). The kinetics of multiple nucleotide incorporation during processive elongation also were determined. This work establishes a novel way to generate a highly active elongation complex of the medically important NS5B polymerase for structural and functional studies.  相似文献   

15.
Gohara DW  Arnold JJ  Cameron CE 《Biochemistry》2004,43(18):5149-5158
We have performed a kinetic and thermodynamic analysis of 3D(pol) derivatives containing substitutions in the ribose-binding pocket with ATP analogues containing correct and incorrect sugar configurations. We find that Asp-238, a residue in structural motif A that is conserved in all RNA-dependent RNA polymerases, is a key determinant of polymerase fidelity. Alterations in the position of the Asp-238 side chain destabilize the catalytically competent 3D(pol)-primer/template-NTP complex and reduce the efficiency of phosphoryl transfer. The reduction in phosphoryl transfer may be a reflection of increased mobility of other residues in motif A that are required for stabilizing the triphosphate moiety of the nucleotide substrate in the active conformation. We present a structural model to explain how Asp-238 functions to select nucleotides with a correct sugar configuration and a correct base. We propose that this mechanism is employed by all RNA-dependent RNA polymerases. We discuss the possibility that all nucleic acid polymerases with the canonical "palm"-based active site employ a similar mechanism to maximize fidelity.  相似文献   

16.
Human rhinoviruses (HRV), the predominant members of the Picornaviridae family of positive-strand RNA viruses, are the major causative agents of the common cold. Given the lack of effective treatments for rhinoviral infections, virally encoded proteins have become attractive therapeutic targets. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) denoted 3Dpol, which is responsible for replicating the viral genome and for synthesizing a protein primer used in the replication. Here the crystal structures for three viral serotypes (1B, 14, and 16) of HRV 3Dpol have been determined. The three structures are very similar to one another, and to the closely related poliovirus (PV) 3Dpol enzyme. Because the reported PV crystal structure shows significant disorder, HRV 3Dpol provides the first complete view of a picornaviral RdRp. The folding topology of HRV 3Dpol also resembles that of RdRps from hepatitis C virus (HCV) and rabbit hemorrhagic disease virus (RHDV) despite very low sequence homology.  相似文献   

17.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.  相似文献   

18.
Bovine viral diarrhea virus (BVDV) infection is still a plague that causes important livestock pandemics. Despite the availability of vaccines against BVDV, and the implementation of massive eradication or control programs, this virus still constitutes a serious agronomic burden. Therefore, the alternative approach to combat Pestivirus infections, based on the development of antiviral agents that specifically inhibit the replication of these viruses, is of preeminent actuality and importance.Capitalizing from a long-standing experience in antiviral drug design and development, in this work we present and characterize a series of small molecules based on the 9-aminoacridine scaffold that exhibit potent anti-BVDV activity coupled with low cytotoxicity. The relevant viral protein target – the RNA-dependent RNA polymerase – the binding mode, and the mechanism of action of these new antivirals have been determined by a combination of in vitro (i.e., enzymatic inhibition, isothermal titration calorimetry and site-directed mutagenesis assays) and computational experiments. The overall results obtained confirm that these acridine-based derivatives are promising compounds in the treatment of BVDV infections and, based on the reported structure-activity relationship, can be selected as a starting point for the design of a new generation of improved, safe and selective anti-BVDV agents.  相似文献   

19.
Hepatitis C virus (HCV) NS5B is RNA-dependent RNA polymerase (RdRP), the essential catalytic enzyme for HCV replication. Recently, NS5A has been reported to be important for the establishment of HCV replication in vitro by the adaptive mutations, although its role in viral replication remains uncertain. Here we report that purified bacterial recombinant NS5A and NS5B directly interact with each other in vitro, detected by glutathione S-transferase (GST) pull-down assay. Furthermore, complex formation of these proteins transiently coexpressed in mammalian cells was detected by coprecipitation. Using terminally and internally truncated NS5A, two discontinuous regions of NS5A (amino acids 105-162 and 277-334) outside of the adaptive mutations were identified to be independently essential for the binding both in vivo and in vitro (Yamashita, T., Kaneko, S., Shirota, Y., Qin, W., Nomura, T., Kobayashi, K., and Mkyrakami, S. (1998) J. Biol. Chem. 273, 15479-15486). We previously examined the effect of His-NS5A on RdRP activity of the soluble recombinant NS5Bt in vitro (see Yamashita et al. above). Wild NS5A weakly stimulated at first (when less than 0.1 molar ratio to NS5B) and then inhibited the NS5Bt RdRP activity in a dose-dependent manner. The internal deletion mutants defective in NS5B binding exhibited no inhibitory effect, indicating that the NS5B binding is necessary for the inhibition. Taken together, our results support the idea that NS5A modulates HCV replication as a component of replication complex.  相似文献   

20.
To replicate its segmented, double-stranded RNA (dsRNA) genome, the rotavirus RNA-dependent RNA polymerase, VP1, must recognize viral plus-strand RNAs (+RNAs) and guide them into the catalytic center. VP1 binds to the conserved 3' end of rotavirus +RNAs via both sequence-dependent and sequence-independent contacts. Sequence-dependent contacts permit recognition of viral +RNAs and specify an autoinhibited positioning of the template within the catalytic site. However, the contributions to dsRNA synthesis of sequence-dependent and sequence-independent VP1-RNA interactions remain unclear. To analyze the importance of VP1 residues that interact with +RNA on genome replication, we engineered mutant VP1 proteins and assayed their capacity to synthesize dsRNA in vitro. Our results showed that, individually, mutation of residues that interact specifically with RNA bases did not diminish replication levels. However, simultaneous mutations led to significantly lower levels of dsRNA product, presumably due to impaired recruitment of +RNA templates. In contrast, point mutations of sequence-independent RNA contact residues led to severely diminished replication, likely as a result of improper positioning of templates at the catalytic site. A noteworthy exception was a K419A mutation that enhanced the initiation capacity and product elongation rate of VP1. The specific chemistry of Lys419 and its position at a narrow region of the template entry tunnel appear to contribute to its capacity to moderate replication. Together, our findings suggest that distinct classes of VP1 residues interact with +RNA to mediate template recognition and dsRNA synthesis yet function in concert to promote viral RNA replication at appropriate times and rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号