首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

2.
Abstract— The effect of 15 h continuous exposure to CS2 on the metaboliam of glucose and free amino acids in the brain of rats was studied. CS2 caused a moderate hypoglycaemia. There were also changes in the amounts of some amino acids in the brain. Glutamate and γ-aminobutyrate were lower whereas glutamine was markedly increased. Comparative studies in vivo of the metabolism of [2-14C]glucose and [1-14C]butyrate indicated that CS2 did not affect glycolysis or the incorporation of 14C from glucose into amino acids except into γ-aminobutyrate which was reduced. Contrary to the findings with [14C]glucose, CS2 provoked distinct changes in the labelling of amino acids when [14C]butyrate was the precursor. The most notable change was a markedly increased incorporation of 14C into glutamine. Based on the two-compartment model of brain glutamate the experimental findings indicated that CS2 affected metabolism associated with the 'small' pool of glutamate but had a minimal effect on metabolism associated with the 'large' glutamate pool. The possibility is suggested that the changes observed involved an increased rate of ammonia removal. The low incorporation of 14C into γ-aminobutyrate from either precursor is consistent with other evidence showing that CS2 interferes with pyridoxal phosphate-dependent enzymes.  相似文献   

3.
Abstract– We have determined the incorporation of [3H]-, [1-14C]- and [2-14C]acetate into glutamate, glutamine and aspartate of the adult mouse brain. All these three acetates were incorporated more extensively into glutamine than into glutamate. This has been reported by several authors for each of these labelled acetates in separate experiments. It was shown that [3H, 2-14C]acetate can be used to obtain an acetate labelling ratio analogous to the previously used [2-14C]acetate/[1-14C]acetate labelling ratio. From these acetate labelling ratios of glutamine and glutamate conclusions can be deduced about the dynamic relationship of these amino acids with each other and with the tricarboxylic acid cycle.
A fairly large isotope effect between acetate and glutamate was observed. As this isotope effect is very likely caused by the citrate synthase reaction, it can be argued that citrate synthase involved in the conversion of labelled acetate into glutamate is far out of equilibrium in vivo. Comparing our data with literature data, the possibility can be suggested that citrate synthase in the acetate metabolizing compartment is in situ kinetically distinct from citrate synthase in other compartments of the brain.  相似文献   

4.
Abstract: The metabolic fate of glutamate in astrocytes has been controversial since several studies reported >80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 m M [U-13C]glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2–0.5 m M glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C]lactate was essentially unchanged within the range of 0.2–0.5 m M glutamate, whereas the amount of [13C]aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 m M , suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 m M and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

5.
The magnitude of metabolic activation is greatly underestimated in autoradiographic studies using [1- or 6-14C]glucose compared to parallel assays with [14C]deoxyglucose indicating that most of the label corresponding to the additional [14C]glucose consumed during activation compared to rest is quickly released from activated structures. Label could be lost by net release of [14C]lactate from brain or via lactate exchange between blood and brain. These possibilities were distinguished by comparison of glucose and lactate specific activities in arterial blood and brain before, during, and after generalized sensory stimulation and during spreading cortical depression. Over a wide range of brain lactate concentrations, lactate specific activity was close to the theoretical maximum, i.e. half that of [6-14C]glucose, indicating that exchange-mediated dilution of lactate is negligible and that efflux of [14C]lactate probably accounts for most of the label loss. Low lactate dilution also indicates that dilution of glutamate C4 fractional enrichment in [13C]glucose studies, currently ascribed predominantly to lactate exchange, arises from other unidentified pathways or factors. Alternative explanations for glutamate dilution (presented in Supporting Information) include poorly labeled amino acid pools and oxidative metabolism of minor substrates in astrocytes to first dilute the astrocytic glutamine pool, followed by dilution of glutamate via glutamate–glutamine cycling.  相似文献   

6.
Abstract– 14CO2 production and 14C incorporation into proteins was studied in isolated rat sciatic nerves during incubation with 0.1 mM-[1-14C]leucine. Rats were made diabetic with streptozotocin. Nerves from diabetic rats incubated with glucose oxidized more [14C]leucine than controls. This difference was abolished in the presence of insulin (1 mU/ml). The effects of diabetes and insulin on leucine oxidation could not be demonstrated in the absence of glucose. Insulin stimulated the incorporation of [14C] from leucine into proteins by nerves from controls and diabetic rats.
Nerves undergoing Wallerian degeneration showed a marked increase in DNA content and stimulated incorporation of [14C]leucine into proteins. 14CO2 production from leucine proceeded at 75% of the rate observed in intact nerves. Neither insulin nor diabetes affected leucine metabolism in degenerating nerves.
Neither the extracellular space nor the concentration of free amino acids were significantly different in nerves obtained from control and diabetic rats, except for lower glutamine content in the latter.
In vitro leucine metabolism of nerves is affected by diabetes, insulin and the integrity of the axon. The Schwann cell is suggested as a possible site of the observed changes in leucine metabolism.  相似文献   

7.
Abstract— The metabolism of γ-hydroxybutyrate (GHB) was studied by following the fate of [1-14C]GHB in mouse brain after an intravenous injection. Cerebral uptake of GHB was rapid and this substance disappeared from brain tissue with a half-life of approx 5 min. Degradation of [1-14C]GHB took place in the brain since 14C was incorporated in amino acids associated with the tricarboxylic acid cycle: the labelling pattern was consistent with the oxidation of GHB via succinate through the cycle, rather than with β-oxidation of GHB. Conversion of [14C]GHB into [14C]GABA prior to oxidation was negligible, thus it is unlikely that the pharmacological action of GHB would be mediated through GABA formation. [14C]GHB oxidation also elicited the signs of metabolic compartmentation of the tricarboxylic acid cycle in the brain (glutamine/glutamate specific radioactivity ratio was about 4).  相似文献   

8.
Abstract— The [14C]glucose incorporation rate into brain aspartate, glutamate, GABA and glutamine in rats deprived of total and paradoxical sleep was studied. The specific radioactivities of the isolated metabolites were related to the specific radioactivity of brain glucose. It was expected that the incorporation of radioactivity would reflect subtle changes occurring in brain amino acid metabolism during total and selective paradoxical sleep deprivation. The results show an increased specific radioactivity of glutamine in total sleep-deprived rats. The variation in specific radioactivity of glutamine without a change in its concentration indicates an increased turnover of this compound. The reasons and possible mechanism for the change in glutamine specific radioactivity are discussed.  相似文献   

9.
Abstract: Radiolabelled glutamine and glucose were infused into lateral ventricles of rats in order to label transmitter amino acid pools in vivo . Brain regions close to the lateral ventricle (hippocampus, corpus striatum, hypothalamus) were labelled more effectively than more distant structures such as cerebral cortex or cerebellum. All regions were labelled to much the same extent over 30-150 min by [U-14C]glucose, [U-14C]glutamine, or [3H]glutamine administered alone or together in doublelabel experiments when allowance was made for any differences in precursor specific radioactivities. Slices of cerebral cortex or hippocampus from brains labelled in vivo were incubated and stimulated in vitro with veratrine (75 μ M ); tetrodotoxin (1 μ M ) was present in the control medium. Single-label experiments showed that [U-14C]- glutamine was more effective than [U-14C]glucose for labelling releasable glutamate and GABA. Double-label experiments showed that [3H]glutamine and [U-14C]- glucose given together in vivo labelled glutamate and GABA releasable in vitro to a similar extent. Both types of experiment empbasise the large contribution made by glutamine in vivo to pools of transmitter glutamate and GABA.  相似文献   

10.
Abstract— Of seven amino acids studied, glutamic acid and phenylalanine were incorporated in highest amounts into the hot-TCA-insoluble material of the 100,000 g supernatant fraction of rat brain homogenate. The system for incorporation of phenylalanine was RNase-insensitive and required ATP (apparent Km = 0.64 m m ), KC1 (apparent Km = 14 m m ) and MgCl2 (optimal concentration range 4-15 m m ). The apparent Km for phenylalanine was 2.9 m m . [14C]Phenylalanine did not undergo modification before incorporation. Tyrosine and phenylalanine inhibited the incorporation, respectively, of [14C]phenylalanine and [14C]tyrosine when incubated simultaneously or successively. The Km and Kt (3.3 m m ) values for phenylalanine in the incorporation reaction and as inhibitor of the incorporation of [14C]tyrosine were similar. We suggest that both the enzyme and the acceptor for the incorporation of these two amino acids are the same. [14C]Phenylalanine and [14C]tyrosine entered into COOH-terminal positions in the reactions described. Brain exhibited a 25- to 100-fold higher capacity to incorporate phenylalanine than that of liver, kidney or thyroid. The acceptor capacity in rat brain rapidly decreased from day 5 to day 15 of postnatal age and then slowly until age 150 days.  相似文献   

11.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY l-DOPA   总被引:3,自引:2,他引:1  
Abstract— A study has been made of the effect of a single intraperitoneal dose of l -DOPA on the in vivo metabolism of [14C]leucine and [14C]lysine by the brain, and on their uptake into brain protein. Administration of 500 mg DOPA/kg to 40-g rats raised the concentrations of several free amino acids; the only amino acid which underwent a statistically significant increment was alanine. Intracisternally-injected [U-14C]leucine was rapidly metabolized to other labelled compounds; DOPA administration did not influence significantly the rate of its metabolism. No similar metabolic change was observed after administering [U-14C]lysine intracisternally.
Incorporation of [14C]leucine and [14C]lysine into total brain protein was significantly reduced 45 min after DOPA administration. There was also depression of the uptake of labelled amino acid into a supernatant fraction, obtained by high speed centrifugation of the brain homogenate, and into brain microtubular protein (tubulin). Reduced amino-acid incorporation into brain proteins observed 45 min after l -DOPA injection coincided with extensive disaggregation of brain polyribosomes. At 120 min after DOPA treatment, disaggregation was no longer significant and there was a smaller depression in labelled amino aicd incorporation, which disappeared completely 240 min after l -DOPA injection. It is concluded that disaggregation of brain polysomes following DOPA treatment is an accurate reflection of a change in the intensity of brain protein synthesis in vivo.  相似文献   

12.
Abstract— [U-14C]Ribose was given by subcutaneous injection to young rats aged 2–56 days. During the first week after birth 14C in the brain was found mainly combined in glucose, fructose and sedoheptulose which contained 46–57 per cent of the 14C in the acid soluble metabolites in the rat brain. In contrast, during the critical period (10–15 days after birth) the 14C in the free sugars decreased from 24 to 3 per cent, while the 14C content of amino acids in the brain increased from 11 to 44 per cent of the total perchloric acid-soluble 14C. The increase in labelling of amino acids during the critical period was attributed to increased glycolysis and increased oxidation of pyruvate. The relative specific radioactivity of y -aminobutyrate and aspartate in the rat brain at 28 days after birth was equal to or greater than the relative specific radioactivity of glutamate. Assuming that the increase in amino acid content following the cessation of cell proliferation in the brain is located mainly in cell processes (cytoplasm of axons, dendrites, glial processes and nerve terminals), tentative values were estimated for the pool sizes of glutamate, glutamine, aspartate and y -amino butyrate.  相似文献   

13.
Abstract: Primary cultures of cerebral cortical astrocytes were incubated with [U-13C]glutamate (0.5 m M ) in modified Dulbecco's medium for 2 h. Perchloric acid (PCA) extracts of the cells as well as redissolved lyophilized media were subjected to NMR spectroscopy to identify 13C-labeled metabolites. NMR spectra of the PCA extracts exhibited distinct multiplets for glutamate, aspartate, glutamine, and malate. The culture medium showed peaks for a multitude of compounds released from the astrocytes, among which lactate, glutamine, alanine, and citrate were readily identifiable. For the first time incorporation of label into lactate from glutamate was clearly demonstrated by doublet formation in the C-3 position and two doublets in the C-2 position of lactate. This labeling pattern can only occur by incorporation from glutamate, because natural abundance will only produce singlets in proton-decoupled 13C spectra. Glutamine, released into the medium, was labeled uniformly to a large extent, but the C-3 position not only showed the expected apparent triplet but also a doublet due to 13C incorporation into the C-4 position of glutamine. The doublet accounted for 11% of the total label in the glutamine synthesized and released within the incubation period. The corresponding labeling pattern of [13C]glutamate in the PCA extracts showed that 19% of the glutamate contained 12C. Labeling of lactate, citrate, malate, and aspartate as well as incorporation of 12C into uniformly labeled glutamate and glutamine could only arise via the tricarboxylic acid cycle. The relative amount of glutamate metabolized via this route is at least 70% as calculated from the areas of the C-3 resonances of these compounds. Only a maximum of 30% was converted to glutamine directly.  相似文献   

14.
Abstract: 13C-NMR spectroscopy was used to evaluate the dynamic consequences of portacaval anastomosis on neuronal and astrocytic metabolism and metabolic trafficking between neurons and astrocytes. Glutamate is predominantly labeled from [1-13C]glucose, whereas [2-13C]acetate is more efficient in labeling glutamine, in accordance with its primary metabolism in astrocytes. Alanine and succinate labeling was only observed with [1-13C]glucose as precursor. Brain [1-13C]glucose metabolism in portacaval-shunted rats was similar to that in sham-operated controls with the exception of labeled glutamine and succinate formation, which was increased in shunted rats. The 13C enrichment was, however, decreased owing to an increase in total glutamine and succinate. Using [2-13C]acetate, on the other hand, flux of astrocytic label to neurons was severely decreased because label incorporation into glutamate, aspartate, and GABA was decreased following portacaval shunting. The latter amino acids are predominantly localized in neurons. These findings demonstrate that metabolic trafficking of amino acids from astrocytes to neurons is impaired in portacaval-shunted rats.  相似文献   

15.
Abstract— The characteristics of the uptake of l -[U-14C] glutamate into rat dorsal sensory ganglia were investigated. The uptake was mediated by two distinct kinetic systems, with apparent Km values of the order of 10−3 M (low affinity) and 10−5 m (high affinity). The high affinity uptake system was strongly dependent upon temperature and sodium ion concn, and was depressed by a number of metabolic inhibitors. Following uptake, [14C] glutamate was extensively metabolized, primarily to glutamine, although this was not so with cultured ganglia, where in addition to an increased uptake of [14C] glutamate, the specific radioactivity of glutamate was increased and that of glutamine decreased. The labelled substrates [U-14C]pyruvate and [U-14C] acetate were used to investigate this phenomenon and the results are discussed in relation to current knowledge of metabolic compartmentation in nervous tissue.  相似文献   

16.
Abstract— Incorporation of [14C]tyrosine into the C-terminal position of α-tubulin of rat brain cytosol was 10-fold higher for non-assembled than for assembled tubulin. The incorporation into tubulin from disassembled microtubules was higher than into non-assembled tubulin; therefore, the low incorporation into microtubules was not due to a lower acceptor capacity of their tubulin constituent.
[14C]Tyrosine was released from assembled and non-assembled [14C]tyrosinated tubulin by the action of an endogenous carboxypeptidase. Release from non-assembled tubulin was shown by incubating a tubulinyl-[14C]tyrosine preparation in the presence of CaCl2 at a concentration that abolished microtubule formation. Release from microtubules was inferred from the observation that the percentages of [14C]tyrosine released and the decrease of the specific radioactivity of the recovered microtubules were practically identical and did not change after a 10-fold dilution of the incubated microtubules.
[3H]Phenylalanine was released from a preparation of tubulinyl-[3H]phenylalanine also by an enzymatic activity.
The capacity of a tubulin preparation to incorporate tyrosine was increased 43% by pre-treatment with endogenous carboxypeptidase.
Tubulin tyrosinated in vitro was assembled to the same extent as native tubulin. After a mixture of tubulinyl-[14C]tyrosine and tubulinyl-[3H]phenylalanine was partially assembled, the ratio of 14C/3H found in the microtubules was the same as in the non-assembled tubulin fraction.  相似文献   

17.
Abstract: Cerebral metabolism of d [1-13C]glucose was studied with localized 13C NMR spectroscopy during intravenous infusion of enriched [1-13C]glucose in four healthy subjects. The use of three-dimensional localization resulted in the complete elimination of triacylglycerol resonance that originated in scalp and subcutaneous fat. The sensitivity and resolution were sufficient to allow 4 min of time-resolved observation of label incorporation into the C3 and C4 resonances of glutamate and C4 of glutamine, as well as C3 of aspartate with lower time resolution. [4-13C]Glutamate labeled rapidly reaching close to maximum labeling at 60 min. The label flow into [3-13C]glutamate clearly lagged behind that of [4-13C]glutamate and peaked at t = 110–140 min. Multiplets due to homonuclear 13C-13C coupling between the C3 and C4 peaks of the glutamate molecule were observed in vivo. Isotopomer analysis of spectra acquired between 120 and 180 min yielded a 13C isotopic fraction at C4 glutamate of 27 ± 2% (n = 4), which was slightly less than one-half the enrichment of the C1 position of plasma glucose (63 ± 1%), p < 0.05. By comparison with an external standard the total amount of [4-13C]glutamate was directly quantified to be 2.4 ± 0.1 µmol/ml-brain. Together with the isotopomer data this gave a calculated brain glutamate concentration of 9.1 ± 0.7 µmol/ml, which agrees with previous estimates of total brain glutamate concentrations. The agreement suggests that essentially all of the brain glutamate is derived from glucose in healthy human brain.  相似文献   

18.
Bender, L., Joy IV, R. W. and Thorpe, T. A. 1987. Studies on [14C]-glucose metabolism during shoot bud induction in cultured cotyledon explants of Pinus radiala.
Excised cotyledons of Pinus radiata D. Don, cultured under shoot-forming (plus N6-benzyladenine) and elongating (minus N6-benzyladenine) conditions, were fed U-[14C]-glucose for 3 h in the light followed by a 3 h chase period immediately after excision (day 0) and after 3 days of culture (day 3). The incorporation of l4C into individual soluble metabolites as well as into protein was followed. No labelled citrate could be detected at day 0, however, a flow of 14C from glucose to glutamate/ glutamine occurred. During this stage the synthesis of glutamine strongly increased in the cotyledons supplied with N6-benzyladenine, which suggests a positive influence of this cytokinin on nitrogen incorporation prior to differentiation. After 3 days of cultivation large amounts of labelled citrate were detected. An increased incorporation of label into protein due to the cytokinin treatment was not detected during the early culture period (days 0 and 3). Labelled amino acids were incorporated into protein to different degrees, but this was not influenced by the hormonal treatment.  相似文献   

19.
Abstract— The incorporation of 14C into amino acids of the brain was determined at different times after injection of [U-14C]glucose and [U-14C]ribose to rats maintained on thiamine-supplemented and thiamine-deficient diets for 22 days.
The 14C-content of amino acids in the brain of thiamine-deficient rats decreased at times 2–10 min after injection of [U-14C]glucose. but it increased at 2 min and decreased at times 5–10 min after injection of [U-14C]ribose.
The results of labelling of amino acids indicated that the activities in vivo of the thiamine pyrophosphate requiring enzymes, pyruvate oxidase, a-oxoglutarate dehydrogenase and transketolase were similar in the two groups. It was suggested that the observed decrease in the labelling of amino acids was due to one or more of the following factors: (i) a decrease in the activities of glycolytic enzymes catalysing the conversion of glucose into triose phosphate; (ii) a decrease in the transport of substrate to the active site of the enzymes; or (iii) altered neurohistopathology of the brain.
Thiamine deficiency in rats showed a 5% decrease in glutamate ( P < 0–05), 46% decrease in threonine (P < 0001) and 16% increase in glycine ( P < 0–01) content of the brain.  相似文献   

20.
Lumiflavin and Lumichrome Transport in the Central Nervous System   总被引:1,自引:0,他引:1  
Abstract: The transport of the lipid-soluble sugarless flavins, [14C]lumiflavin and [14C]lumichrome, into and from the isolated choroid plexus and brain slices was studied in vitro. The isolated choroid plexus accumulated both [14C] flavins by a saturable, energy-requiring process that did not depend on binding or intracellular metabolism of the [14C] flavins. Both sugar-containing and sugarless flavins, as well as cyclic organic acids, significantly inhibited [14C]lumiflavin and [14C]Iumichrome uptake by the isolated choroid plexus. Within 2.5 min, 75% of the [14C]lumiflavin accumulated by the isolated choroid plexus was released into the medium. Brain slices accumulated [14C]lumiflavin by a saturable process that did not meet all the criteria for active transport. Ninety-five percent of the [14C]lumiflavin accumulated by brain slices was released into the medium within 7.5 min. In vivo , 2 h after the intraventricular injection of 6.5 nmol [14C]lumiflavin, almost all of the [14C]flavin was cleared from the CNS. Addition of 3.5 μmol FMN to the intraventricular injectate significantly decreased the clearance of [14C]lumiflavin from the CNS. These studies document that the sugarless flavins are transported by the flavin transport systems in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号