首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bile acids are synthesized from cholesterol in the liver and are excreted into bile via the hepatocyte canalicular bile salt export pump. After their passage into the intestine, bile acids are reabsorbed in the ileum by sodium-dependent uptake across the apical membrane of enterocytes. At the basolateral domain of ileal enterocytes, bile acids are extruded into portal blood by the heterodimeric organic solute transporter OSTalpha/OSTbeta. Although the transport function of OSTalpha/OSTbeta has been characterized, little is known about the regulation of its expression. We show here that human OSTalpha/OSTbeta expression is induced by bile acids through ligand-dependent transactivation of both OST genes by the nuclear bile acid receptor/farnesoid X receptor (FXR). FXR agonists induced endogenous mRNA levels of OSTalpha and OSTbeta in cultured cells, an effect that was not discernible upon inhibition of FXR expression by small interfering RNAs. Furthermore, OST mRNAs were induced in human ileal biopsies exposed to the bile acid chenodeoxycholic acid. Reporter constructs containing OSTalpha or OSTbeta promoters were transactivated by FXR in the presence of its ligand. Two functional FXR binding motifs were identified in the OSTalpha gene and one in the OSTbeta gene. Targeted mutation of these elements led to reduced inducibility of both OST promoters by FXR. In conclusion, the genes encoding the human OSTalpha/OSTbeta complex are induced by bile acids and FXR. By coordinated control of OSTalpha/OSTbeta expression, bile acids may adjust the rate of their own efflux from enterocytes in response to changes in intracellular bile acid levels.  相似文献   

2.
Li J  Kuruba R  Wilson A  Gao X  Zhang Y  Li S 《PloS one》2010,5(11):e13955
Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands.  相似文献   

3.
We generated and characterized a firefly luciferase reporter mouse for the nuclear receptor farnesoid X receptor (FXR). This FXR reporter mouse has basal luciferase expression in the terminal ileum, an organ with well-characterized FXRalpha signaling. In vivo luciferase activity reflected the diurnal activity pattern of the mouse, and is regulated by both natural (bile acids, chenodeoxycholic acid) and synthetic (GW4064) FXRalpha ligands. Moreover, in vivo and in vitro analysis showed luciferase activity after GW4064 administration in the liver, kidney, and adrenal gland, indicating that FXRalpha signaling is functional in these tissues. Hepatic luciferase activity was robustly induced in cholestatic mice, showing that FXRalpha signaling pathways are activated in this disease. In conclusion, we have developed an FXR reporter mouse that is useful to monitor FXRalpha signaling in vivo in health and disease. The use of this animal could facilitate the development of new therapeutic compounds that target FXRalpha in a tissue-specific manner.  相似文献   

4.
The farnesoid X receptor (FXR) is a key metabolic regulator in the liver by maintaining the homeostasis of liver metabolites. Recent findings suggest that FXR may have a much broader function in liver physiology and pathology. In the present work, we identify a novel role of FXR in protecting liver cell from apoptosis induced by nutritional withdrawal including serum deprivation in vitro or starvation in vivo. Two FXR ligands, chenodeoxycholic acid (CDCA) and GW4064, rescued HepG2 cells from serum deprivation-induced apoptosis in a dose-dependent manner. This effect of FXR on apoptotic suppression was compromised when FXR was knocked down by short interfering RNA. Similarly, the effects of both CDCA and GW4064 were abolished after inhibition of the MAPK pathway by a specific inhibitor of MAPK kinase 1/2. Immunoblotting results indicated that FXR activation by CDCA and GW4064 induced ERK1/2 phosphorylation, which was attenuated by serum deprivation. In vivo, FXR(-/-) mice exhibited an exacerbated liver apoptosis and lower levels of phosphorylated-ERK1/2 compared to wild-type mice after starvation. In conclusion, our results suggest a novel role of FXR in modulating liver cell apoptosis.  相似文献   

5.
These studies identify an organic solute transporter (OST) that is generated when two novel gene products are co-expressed, namely human OSTalpha and OSTbeta or mouse OSTalpha and OSTbeta. The results also demonstrate that the mammalian proteins are functionally complemented by evolutionarily divergent Ostalpha-Ostbeta proteins recently identified in the little skate, Raja erinacea, even though the latter exhibit only 25-41% predicted amino acid identity with the mammalian proteins. Human, mouse, and skate OSTalpha proteins are predicted to contain seven transmembrane helices, whereas the OSTbeta sequences are predicted to have a single transmembrane helix. Human OSTalpha-OSTbeta and mouse Ostalpha-Ostbeta cDNAs were cloned from liver mRNA, sequenced, expressed in Xenopus laevis oocytes, and tested for their ability to functionally complement the corresponding skate proteins by measuring transport of [3H]estrone 3-sulfate. None of the proteins elicited a transport signal when expressed individually in oocytes; however, all nine OSTalpha-OSTbeta combinations (i.e. OSTalpha-OSTbeta pairs from human, mouse, or skate) generated robust estrone 3-sulfate transport activity. Transport was sodium-independent, saturable, and inhibited by other steroids and anionic drugs. Human and mouse OSTalpha-OSTbeta also were able to mediate transport of taurocholate, digoxin, and prostaglandin E2 but not of estradiol 17beta-d-glucuronide or p-aminohippurate. OSTalpha and OSTbeta were able to reach the oocyte plasma membrane when expressed either individually or in pairs, indicating that co-expression is not required for proper membrane targeting. Interestingly, OSTalpha and OSTbeta mRNAs were highly expressed and widely distributed in human tissues, with the highest levels occurring in the testis, colon, liver, small intestine, kidney, ovary, and adrenal gland.  相似文献   

6.
Hepatic parenchymal and nonparenchymal cells are highly susceptible to ethanol and its metabolites, and excessive alcohol consumption results in damage to the liver. Ethanol induces an increased prevalence for bacterial overgrowth in the small intestine and translocation of endotoxin into the portal blood. Some studies have pointed to a role for activation of Kupffer cells by gut bacteria-derived endotoxin as a primary event in mechanisms of alcoholic liver injury (ALD). GW4064, a potent farnesoid X receptor (FXR) agonist, has been developed as a hepatoprotective agent, and has been used in animal models of a variety of liver diseases. At the same time, previous experimental results showed that BAs and GW4064 inhibit bacterial overgrowth in the small intestine. It is logical to postulate that GW4064 may control or alleviate the ethanol-induced liver injury through inhibiting gut bacterial overgrowth. GW4064 activates FXR, which induces the expression of several genes with potential functions in mucosal defense to prevent intestinal bacteria overgrowth and translocation into the circulation induced by ethanol, and then will alleviate ethanol-induced liver injury. The hypothesis will provide the brand-new direction that we may prevent and treat ALD by using GW4064 through activating FXR to control gut bacteria overgrowth.  相似文献   

7.
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology.  相似文献   

8.
Previous studies have demonstrated a dramatic induction of inflammatory gene expression in livers from mice fed a high-fat, high-cholesterol diet containing cholate after 3-5 wk. To determine the contribution of cholate in mediating these inductions, C57BL/6 mice were fed a chow diet supplemented with increasing concentrations of cholic acid (CA) for 5 days. A dose-dependent induction in the hepatic levels of TNF-alpha, VCAM-1, ICAM-1, and SAA-2 mRNA were observed. As positive controls, a dose-dependent repression of cholesterol 7alpha-hydroxylase and a dose-dependent induction of small heterodimer partner (SHP) expression were also observed, suggesting that farnesoid X receptor (FXR) was activated. In addition, ICAM-1 and SHP mRNA levels were also induced in primary human hepatocytes when treated with chenodeoxycholic acid or GW4064, a FXR-selective agonist. The involvement of FXR in CA-induced inflammatory gene expression was further investigated in the human hepatic cell line HepG2. Both ICAM-1 and SHP expression were induced in a dose- and time-dependent manner by treatment with the FXR-selective agonist GW4064. Moreover, the induction of ICAM-1 by GW4064 was inhibited by the FXR antagonist guggulsterone or with transfection of FXR siRNA. Finally, the activity of FXR was mapped to a retinoic acid response element (RARE) site containing an imbedded farnesoid X response element (FXRE) on the human ICAM-1 promoter and FXR and retinoid X receptor were demonstrated to bind to this site. Finally, FXR-mediated activation of ICAM-1 could be further enhanced by TNF-alpha cotreatment in hepatocytes, suggesting a potential cooperation between cytokine and bile acid-signaling pathways during hepatic inflammatory events.  相似文献   

9.
Organic solute transporter (OSTalpha-OSTbeta) is a novel heteromeric bile acid and sterol transporter expressed at the basolateral membranes of epithelium in the ileum, kidney, and liver. To determine whether OSTalpha-OSTbeta undergoes farnesoid X receptor (FXR)-dependent adaptive regulation following cholestatic liver injury, mRNA and protein expression levels were analyzed in patients with primary biliary cirrhosis (PBC) and following common bile duct ligation (CBDL) in rats and Fxr null and wild-type mice. Hepatic OSTalpha and OSTbeta mRNA increased 3- and 32-fold, respectively, in patients with PBC compared with controls, whereas expression of Ostalpha and Ostbeta also increased in the liver of rats and mice following CBDL. In contrast, expression of Ostalpha and Ostbeta mRNA was generally lower in Fxr null mice, and CBDL failed to enhance expression of Ostalpha and Ostbeta compared with wild-type mice. HepG2 cells treated for 24 h with chenodeoxycholic acid, a selective FXR ligand, had higher levels of OSTalpha and OSTbeta mRNA and protein. Increases in OST protein were visualized by confocal microscopy at the plasma membrane. These results indicate that expression of Ostalpha and Ostbeta are highly regulated in response to cholestasis and that this response is dependent on the FXR bile acid receptor.  相似文献   

10.
11.
12.
We evaluated the metabolic impact of farnesoid X receptor (FXR) activation by administering a synthetic FXR agonist (GW4064) to mice in which obesity was induced by a high fat diet. Administration of GW4064 accentuated body weight gain and glucose intolerance induced by the high fat diet and led to a pronounced worsening of the changes in liver and adipose tissue. Mechanistically, treatment with GW4064 decreased bile acid (BA) biosynthesis, BA pool size, and energy expenditure, whereas reconstitution of the BA pool in these GW4064-treated animals by BA administration dose-dependently reverted the metabolic abnormalities. Our data therefore suggest that activation of FXR with synthetic agonists is not useful for long term management of the metabolic syndrome, as it reduces the BA pool size and subsequently decreases energy expenditure, translating as weight gain and insulin resistance. In contrast, expansion of the BA pool size, which can be achieved by BA administration, could be an interesting strategy to manage the metabolic syndrome.  相似文献   

13.
14.
15.
16.
Acute lung injury and its more severe form, acute respiratory distress syndrome, are characterized by an acute inflammatory response in the airspaces and lung parenchyma. The nuclear receptor farnesoid X receptor (FXR) is expressed in pulmonary artery endothelial cells. Here, we report a protective role of FXR in a lipopolysaccharide-induced mouse model of acute lung injury. Upon intratracheal injection of lipopolysaccharide, FXR-/- mice showed higher lung endothelial permeability, released more bronchoalveolar lavage cells to the alveoli, and developed acute pneumonia. Cell adhesion molecules were expressed at higher levels in FXR-/- mice as compared with control mice. Furthermore, lung regeneration was much slower in FXR-/- mice. In vitro experiments showed that FXR activation blocked TNFα-induced expression of P-selectin but stimulated proliferation of lung microvascular endothelial cells through up-regulation of Foxm1b. In addition, expression of a constitutively active FXR repressed the expression of proinflammatory genes and improved lung permeability and lung regeneration in FXR-/- mice. This study demonstrates a critical role of FXR in suppressing the inflammatory response in lung and promoting lung repair after injury.  相似文献   

17.
18.
目的:探讨法尼酯X受体(FXR)特异性激动剂GW4064抑制结肠癌细胞浸润转移的机制。方法:在体外培养人结肠癌细胞HT-29,应用GW4064作用于结肠癌细胞,以四唑氮蓝还原法(MTT)检测细胞活性的变化。用transwell小室研究结肠癌细胞的迁移及浸润。用RT-PCR检测FXRm RNA及MMP-7mRNA表达的变化,用western blot检测FXR及MMP-7蛋白表达的变化。结果:MTT结果显示GW4064作用于人结直肠HT-29细胞的生长抑制率呈浓度依赖性;transwell小室结果显示GW4064抑制结肠癌细胞的浸润转移,与对照组相比,差异具有统计学意义(P0.05),RT-PCR及Western blot显示GW4064促进FXR m RNA及蛋白表达,抑制MMP-7mRNA及蛋白的表达,与对照组相比差异有统计学意义(P0.05)。结论:GW4064抑制结肠癌细胞的生长及转移,上调HT-29细胞FXR m RNA及蛋白的表达,下调HT-29细胞MMP-7 m RNA及蛋白的表达。FXR被激活后抑制结肠癌细胞转移,MMP-7可能是其作用通路之一。  相似文献   

19.
Farnesoid X receptor activates transcription of the phospholipid pump MDR3   总被引:13,自引:0,他引:13  
The human multidrug resistance gene MDR3 encodes a P-glycoprotein that belongs to the ATP-binding cassette transporter family (ABCB4). MDR3 is a critical trans-locator for phospholipids across canalicular membranes of hepatocytes, evidenced by the fact that human MDR3 deficiencies result in progressive familial intrahepatic cholestasis type III. It has been reported previously that MDR3 expression is modulated by hormones, cellular stress, and xenobiotics. Here we show that the MDR3 gene is trans-activated by the farnesoid X receptor (FXR) via a direct binding of FXR/retinoid X receptor alpha heterodimers to a highly conserved inverted repeat element (a FXR response element) at the distal promoter (-1970 to -1958). In FXR trans-activation assays, both the endogenous FXR agonist chenodeoxycholate and the synthetic agonist GW4064 activated the MDR3 promoter. Deletion or mutation of this inverted repeat element abolished FXR-mediated MDR3 promoter activation. Consistent with these data, MDR3 mRNA was significantly induced by both chenodeoxycholate and GW4064 in primary human hepatocytes in time- and dose-dependent fashions. In conclusion, we demonstrate that MDR3 expression is directly up-regulated by FXR. These results, together with the previous report that the bile salt export pump is a direct FXR target, suggest that FXR coordinately controls secretion of bile salts and phospholipids. Results of this study further support the notion that FXR is a master regulator of lipid metabolism.  相似文献   

20.
Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号