首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of grouse conducted at northern latitudes have shown that tetraonids frequently exhibit cyclic fluctuations in abundance but little is known about the dynamics of grouse species at the southerly edge of their range. Hunting statistics from four species of grouse based on 30 yr of data collected from 210 hunting areas were examined from the Dolomitic Alps in the province of Trentino. These data were summed to represent 18 time series from discrete mountain groups. Analyses identified cycles of ca 5 yr in the minority of rock ptarmigan Lagopus mutus and hazel grouse Bonasa bonasia populations. These cycles only showed significant negative autocorrelation at half the cycle period and were classified as phase-forgetting quasi-cycles. Cycles were not found in time series of black grouse Tetrao terix or capereaillie Tetrao urogallus. Correcting time series for hunting effort or hunting restrictions tended to increase the proportion of populations that exhibited cycles but no difference in the strength of second order density dependence, A linear first order density-dependent autoregressive model described the dynamics of most of the populations with the exception of a proportion of rock ptarmigan and black grouse populations where a non linear first order model provided the best tit. We compare the findings with studies conducted in Finland and suggest possible reasons for the reduced tendency to cycle in the populations of southern Europe.  相似文献   

2.
Based on recent advances in time-series analyses of ecological dynamics using statistical and mathematical models, we summarise our recent results on the seasonal processes in the annual population dynamics of the grey-sided vole Clethrionomys rufocanus (Sundevall, 1846) in Hokkaido, Japan, and report additional analyses on annual and seasonal density dependence. Annual direct density dependence was strong in almost all populations. In contrast, delayed density dependence was generally weak, although clear delayed density dependence was detected in some of the studied populations. Although seasonal density dependence was observed both in winter and summer, direct density dependence was much more profound during winter; thus, winter density dependence contributed most to the overall annual direct density dependence. We found no correlation between the seasonal components of annual direct density dependence; however, the corresponding seasonal components for annual delayed density dependence were positively correlated. We conclude that winter conditions influence the strength of annual direct density dependence most profoundly. Moreover, we conclude that direct density dependence during summer and winter may be generated by different mechanisms, whereas delayed density dependence seems to be generated by a common mechanism. Candidate mechanisms are discussed in relation to general knowledge of northern rodent populations and to specific insights provided by earlier studies of grey-sided voles in Hokkaido.  相似文献   

3.
Indirect measures of population abundance, such as harvest data, are often used to make inference on long term population dynamics when direct data are either not available or are logistically difficult to obtain. However, when harvesting records are used, a common concern is that they may not reflect actual population abundance. We investigated the extent to which harvest data reflected changes in population density of the red grouse Lagopus lagopus scoticus in Great Britain. We used 92 independently managed populations over the period 1977–2000 and examined the temporal and spatial variability of the hunting records and independently obtained count data from each of these managed estates. Three different analyses support the conclusion that grouse hunting records are a reliable indicator of grouse abundance: 1) the number of red grouse shot in autumn showed a tendency to be linearly related to the density of individuals counted in the summer prior to the harvesting, 2) the relationships between the variance and the mean in the harvesting and corresponding count data, calculated over different populations at the same time, or the same locations at different times, were not statistically distinguishable, 3) similar direct and delayed density dependence patterns were observed in hunting records and count data. Our results suggest that red grouse hunting time series are a good proxy for population abundance.  相似文献   

4.
P. Wegge  T. Storaas 《Oecologia》1990,82(4):527-530
Summary The relationship between nest loss in boreal forest grouse and the fluctuations in small rodents was studied at Varaldskogen in southeast Norway during 1979–1986, covering two complete rodent cycles. Nest loss in capercaillie (N=174) and black grouse (N=81) was calculated according to Mayfield (1975) based on nests from radio-equipped hens (N=77) and nests found by other methods (N=178). Small rodent density was measured by snap trapping during spring and autumn. Losses varied as predicted by the classical alternative prey hypothesis (Hagen 1952 and Lack 1954, as elaborated by Angelstam et al. 1984): high losses during rodent crash years (85.5% capercaillie, 51% black grouse), and smaller losses during peak years (54.5% capercaillie, 32.5% black grouse). Losses were inversely related to autumn abundance of rodents in capercaillie (P<0.05), but the correlation was not significant for black grouse (0.10<P<0.20). In capercaillie, the only species with an adequate sample for analysis, no relationship was detected between spring density of rodents and nest loss. Losses during the prepeak years were nearly as high as during crash years, a result inconsistent with the model. We conclude that the numerical response of predators to their cyclic main prey (i.e. small rodents) probably play a main role during the low phase and prepeak year, whereas the dietary shift is most important during the peak and crash year of the cycle.  相似文献   

5.
M. Holyoak  J. H. Lawton 《Oecologia》1993,95(4):592-594
We argue that tests for density dependence are useful in analyses of population dynamics and suggest guide lines for their use and interpretation of results which avoid many of the problems discussed by Wolda and Dennis (1993). Processes other than density dependence per se can cause statistical tests to indicate the presence of density dependence (Wolda and Dennis 1993 and unpublished simulations). Tests for density dependence cannot reveal the mechanism of regulation, but they do indicate the nature of long-term population dynamics. Tests for density dependence give misleading results if sampling is not at generation intervals; however, this problem is avoided if we only use tests on data collected in each generation (Holyoak 1993a). Similarly, species should be semelparous. Non-delayed density dependence should not be considered without looking for delayed density dependence, since the presence of delayed density dependence can lead to over-detection of non-delayed density dependence (Woiwod and Hanski 1992; Holyoak 1993b). The partial autocorrelation function and knowledge of life-history are more useful than tests for density dependence for indicating whether any density dependence is delayed or not (Royama 1992; Holyoak 1993b). Estimation error with a constant upper size limit causes tests for density dependence to overestimate the frequency of delayed density dependence; however we do not know whether estimation error is bounded in real populations. Work in progress suggests that 20–40 generations (depending on the nature of population dynamics) gives a moderate level of accuracy with tests for density dependence, and >40 generations are necessary for tests to be accurate in their assessment of the strength of density dependence. We conclude that tests are useful indicators of whether density dependence, or other feedback mechanisms are likely to be acting.  相似文献   

6.
M. Holyoak  J. H. Lawton 《Oecologia》1992,91(3):425-430
Summary A variety of techniques were used to test for density dependence in 32 time series from bracken-feeding insects. Seventeen taxa (primarily species, but including some pooled data from two or more closely related species whose larvae could not be distinguished in frond surveys) occurred on an open site; a woodland site held 15 taxa. For series of 12 years, collected on the open habitat, direct density dependence was detected by one or more of the techniques in 10 (58.8%) of 17 taxa, compared to only 5 (33.3%) of 15 taxa with time series of 8 years in length from the woodland habitat. Delayed density dependence was detected in 6 cases for the open site and in no cases at the woodland site. Either direct or delayed density dependence was found in 13 (76.5%) of 17 taxa for the open site and 13 (86.7%) of the 15 taxa which occurred on both sites. Although these results suggest a high frequency of density dependence in the species making up the bracken insect community, results from individual tests were extremely variable. Density dependence was detected least often by Vickery and Nudds' (1984) test, and most frequently by Varley and Gradwell's (1960) test, although the latter is prone to high rates of detecting spurious density dependence. Direct density dependence was detected most frequently in taxa that were univoltine and did not have delayed diapause, i.e. in those taxa whose life-histories conform most closely to the assumptions of the models underlying the analyses. Delayed density dependence occurred more frequently in species with more complex life-histories at the open site (taxa that were either bivoltine or multivoltine, or had delayed diapause). The results are consistent with the view that that the bracken herbivore assemblage consists of populations which are independently regulated by density dependent processes, although the present analyses suggest that we cannot rely on these tests to firmly show whether density dependence is present or not in an individual time series of the lengths considered here.  相似文献   

7.
1. A central question in ecology is to separate the relative contribution of density dependence and stochastic influences to annual fluctuations in population size. Here we estimate the deterministic and stochastic components of the dynamics of different European populations of white stork Ciconia ciconia. We then examined whether annual changes in population size was related to the climate during the breeding period (the 'tap hypothesis' sensu Saether, Sutherland & Engen (2004, Advances in Ecological Research, 35, 185 209) or during the nonbreeding period, especially in the winter areas in Africa (the 'tube hypothesis'). 2. A general characteristic of the population dynamics of this long-distance migrant is small environmental stochasticity and strong density regulation around the carrying capacity with short return times to equilibrium. 3. Annual changes in the size of the eastern European populations were correlated by rainfall in the wintering areas in Africa as well as local weather in the breeding areas just before arrival and in the later part of the breeding season and regional climate variation (North Atlantic Oscillation). This indicates that weather influences the population fluctuations of white storks through losses of sexually mature individuals as well as through an effect on the number of individuals that manages to establish themselves in the breeding population. Thus, both the tap and tube hypothesis explains climate influences on white stork population dynamics. 4. The spatial scale of environmental noise after accounting for the local dynamics was 67 km, suggesting that the strong density dependence reduces the synchronizing effects of climate variation on the population dynamics of white stork. 5. Several climate variables reduced the synchrony of the residual variation in population size after accounting for density dependence and demographic stochasticity, indicating that these climate variables had a synchronizing effect on the population fluctuations. In contrast, other climatic variables acted as desynchronizing agents. 6. Our results illustrate that evaluating the effects of common environmental variables on the spatio-temporal variation in population dynamics require estimates and modelling of their influence on the local dynamics.  相似文献   

8.
The role of parasites in regulating populations has been the subject of debate. We tested whether parasites caused population cycles in red grouse by manipulating parasite intensities in four, paired 1 km2 study areas during cyclic population declines over 4 years. Parasite reductions led to (1) larger grouse broods, (2) higher population densities in both autumn and spring, (3) reduced autumn population declines in one of two regions, and (4) reduced spring declines, but only in the first year. We infer that a single trophic interaction between a parasite and its host does not explain cyclic dynamics in spring breeding density in this species, although it contributed to the start of a cyclic decline. Another process was operating to drive the populations down. Together with our other results these findings emphasize that both trophic and intrinsic processes may act within populations to cause unstable dynamics.  相似文献   

9.
Understanding how multiple extrinsic (density‐independent) factors and intrinsic (density‐dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density‐dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) vs. density‐dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10‐year capture‐mark‐recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete‐time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type, and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density‐dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate‐driven environmental change.  相似文献   

10.
1. During the last centuries, the breeding range of the great snipe Gallinago media has declined dramatically in the western part of its distribution. To examine present population dynamics in the Scandinavian mountains, we collected and analysed a 19-year time series of counts of great snipe males at leks in central Norway, 1987-2005. 2. The population showed large annual fluctuations in the number of males displaying at lek sites (range 45-90 males at the peak of the mating season), but no overall trend. 3. We detected presence of direct density-dependent mechanisms regulating this population. Inclusion of the density-dependent term in a Ricker-type model significantly improved the fit with observed data (evaluated with Parametric Bootstrap Likelihood Ratio tests and Akaike's Information Criterion for small sample size). 4. An analysis of (a number of a priori likely) environmental covariates suggests that the population dynamics were affected by conditions influencing reproduction and survival of offspring during the summer, but not by conditions influencing survival at the wintering grounds in Africa. This is in contrast to many altricial birds breeding in the northern hemisphere, and supports the idea that population dynamics of migratory nidifugous birds are more influenced by conditions during reproduction. 5. Inclusion of these external factors into our model improved the detectability of density dependence. This illustrates that allowing for external effects may increase statistical power of density dependence tests and thus be of particular importance in relatively short time series. 6. In our best model of the population dynamics, two likely density-independent offspring survival covariates explained 47.3% of the variance in great snipe numbers (predation pressure estimated by willow grouse reproductive success and food availability estimated by the amount of precipitation in June), whereas density dependence explained 35.5%. Demographic stochasticity and unidentified environmental stochasticity may account for the remaining 17.2%.  相似文献   

11.
1. Voles undergo pronounced oscillations over periods of 3–5 years in northern Europe. A latitudinal gradient of cycle periods and amplitudes has been reported for Fennoscandia, with periods and amplitudes increasing towards northern latitudes.
2. This study formulates a discrete time model based on maternal effects to explain the density fluctuation patterns of microtine rodents. The phenotypic transmission of quality from mothers to offspring generates delayed density dependence, which produces cyclic behaviour in the model.
3. The dynamic patterns predicted by the maternal effect model agree with data. We conclude that the maternal effect hypothesis is a plausible, parsimonious explanation for vole-density cycles in northern Europe.  相似文献   

12.
We investigated the genetic population structure and species status of a relatively sedentary bird that is a permanent resident of western North American forests, the blue grouse (Dendragapus obscurus). Phylogenetic analysis of complete mitochondrial control region DNA sequences resulted in the identification of three basal clades of haplotypes that were largely congruent with well-known biogeographical regions. These clades corresponded to the parapatric sooty (D. o. fuliginosus) and dusky (D. o. obscurus) subspecies groups of blue grouse plus a previously unrecognized division between northern and southern dusky grouse populations; the latter does not correspond closely to any currently recognized subspecies boundary. Approximately 66% of the total genetic variation was distributed among these three regions. Maximum likelihood estimates of gene flow between the regions were low or asymmetric; gene flow has been insufficient to prevent genetic divergence between dusky and sooty grouse. Estimates of gene flow among populations within sooty grouse were large except across the Columbia River valley. Among populations of dusky grouse, estimates of gene flow were heterogeneous and asymmetrical, reflecting large-scale fragmentation of the distribution due to landscape features and associated vegetation. Genetic, morphological and behavioural evidence suggest that sooty and dusky grouse are species-level taxa; the specific status of a third clade remains ambiguous.  相似文献   

13.
The subject of population cycles is regarded as controversial due to a number of unsettled questions such as whether or not cyclic patterns are governed by the same processes at high and low latitudes in Europe. Recent evidence suggests that the dynamics at high and low latitudes share the common temporal pattern of vole dynamics referred to as collapsing population cycles. Despite concurrent interest, the key contention around the causal mechanisms that drive population cycles remains a hot topic in ecology. The aims of this study are to supplement information on the seasonal population dynamics of the field vole Microtus agrestis in the Czech Republic by analysing 25 years of time series data. By applying robust estimation procedures, we estimated several parameters to describe population dynamics, such as population variability, amplitude dampening, cycle period, order of the dynamics and the structure of density dependence. The parameters indicate that field vole dynamics in central Europe are highly variable, cyclic dynamics of order two, with peaks in abundance occurring regularly at intervals of 4–5 years. In addition to exhibiting population cycles, the field vole populations show a pattern of dampened amplitude as observed elsewhere in Europe, including northern latitudes. By analysing temporal trends in seasonal abundances, population growth rates and environmental temperatures, we did not obtain evidence to support the hypothesis that amplitude dampening results from the negative effect of increasingly mild winters on winter population growth rates.  相似文献   

14.
Understanding population dynamics is critical for the management of animal populations. Comparatively little is known about the relative importance of endogenous (i.e. density‐dependent) and exogenous (i.e. density‐independent) factors on the population dynamics of amphibians with complex life cycles. We examined the potential effects of density‐dependent and ‐independent (i.e. climatic) factors on population dynamics by analyzing a 15‐yr time series data of the agile frog Rana dalmatina population from Târnava Mare Valley, Romania. We used two statistical models: 1) the partial rate correlation function to identify the feedback structure and the potential time lags in the time series data and 2) a Gompertz state‐space model to simultaneously investigate direct and delayed density dependence as well as climatic effects on population growth rate. We found evidence for direct negative density dependence, whereas delayed density dependence and climate did not show a strong influence on population growth rate. Here we demonstrated that direct density dependence rather than delayed density dependence or climate determined the dynamics of our study population. Our results confirm the findings of many experimental studies and suggest that density dependence may buffer amphibian populations against environmental stress. Consequently, it may not be easy to scale up from individual‐level effects to population‐level effects.  相似文献   

15.
Using two tests for direct density dependence and standard techniques of time series analysis, we identified density dependence in defoliation time series of the spruce budworm across its outbreak range in eastern North America over the years 1945–1988. We carried out analyses for the entire region and for grid cells of defoliation maps at five spatial scales created by aggregating the smallest grid cells. The rate of detection of direct density dependence, as assessed by two previously published methods, decreased with increasing spatial scale. Using both methods, density dependence was detected more frequently at the periphery of the outbreak range, where defoliation rate was lower. This result suggested that density-dependent regulation may be stronger in those areas. The first order autoregressive process was the basic model for defoliation dynamics overall and the most common model across spatial scales. Second-order processes were encountered much less frequently, and those commonly identified as resulting from delayed density dependence generally occurred across spatial scales at a rate expected by chance alone. Our results were similar to those of other published studies, which have found the detection of density dependence to decrease at larger spatial scales. The results also reinforced the importance of considering spatial scale when diagnosing population processes using time series of abundance for single species. Received: 26 December 1999 / Accepted: 17 March 2000  相似文献   

16.
In contrast to insect and animal populations, little attention has been directed to the study of cycles in plant populations. It has been argued on theoretical grounds that plants present stable dynamics. Nevertheless, there are examples where plant populations appear to exhibit oscillatory dynamics, but the oscillatory signal is variable and comes from very short time series data. Using a combination of time series, models, and empirical results, we present evidence of population cycles for Descurania sophia in a 16-year field experiment. Endogenous and exogenous causal mechanisms were studied to identify processes underlying this temporal dynamic. Our results show a 4-year cycle produced by delayed density dependence. We suggest that high nutrient levels might be responsible for the observed dynamics of D. sophia. Our results suggest that although plant population dynamics may be stabilized by direct density dependence, delayed density dependence could destabilize dynamics.  相似文献   

17.
Abstract: Adequate cover is a critical component of ruffed grouse (Bonasa umbellus) habitat during the brood-rearing period when chick mortality is high. We assessed habitat use by ruffed grouse during the brood-rearing period by comparing characteristics of tree, shrub, and ground layers at ruffed grouse brood and random locations. We captured and radiomarked 29 females with broods in 2 forest settings of the Réserve faunique de Portneuf, Quebec, Canada. We described grouse habitat using ground surveys and forest maps, and we identified the used habitat characteristics using analysis of variance and logistic regression. Females with broods used mixed and regenerated clearcut stands that were 1.5–7 m tall and 11–20 years old. Compared with random locations, grouse locations had higher lateral obstruction (76% vs. 68%), higher small-stem density (29,085 stems/ha vs. 19,340 stems/ha), and were closer to roads and trails. Percentage of coverage by ground vegetation was not higher at grouse locations as often reported in previous studies. Results from this study will help orient ruffed grouse habitat management on Quebec public land and elsewhere in nordic—temperate mixed hardwood—softwood forests to maintain suitable brood habitat after logging operations. Forest management should promote growth of young mixed stands with high horizontal and vertical cover provided by high small-stem density, which offers protection against aerial and terrestrial predation. Edges such as roadsides are also important in brood habitat as they provide food and cover.  相似文献   

18.
Temporal variation in population size is regulated by both exogenous forces and density-dependent feedbacks. Furthermore, accumulating evidence indicates that temporal and spatial variation in climate and resources can modify the strength of density dependence in animal populations. We analyzed six long-term time series estimates of Peromyscus leucopus (white-footed mouse) abundance from Kansas, Ohio, Pennsylvania, Virginia, Vermont, and Maine, USA, using the Kalman filter. Model-averaged estimates of the strength of delayed density dependence increased from west to east and from south to north. The strength of direct and delayed density dependence was positively related to the annual number of days with minimum temperature below −17.8°C. Annual population growth rates of P. leucopus at the Maine site were positively related to acorn abundance and P. leucopus populations tracked the changes in red-oak acorn abundance. The populations of P. leucopus living in northern latitudes might be more dependent on northern red oak (Quercus rubra) acorns for winter food than P. leucopus in southern latitudes. Furthermore, northern red oak trees mast every 4–5 years. Thus, longer, colder winters in northerly latitudes might result in stronger delayed density dependence in mouse populations with a shortage of winter food. Mice might simply track the acorn fluctuations in a delayed autocorrelated manner; however, delayed density dependence remained in our models for the Maine mouse populations after accounting for acorns, suggesting additional sources for delayed density dependence. Our results suggest that, in seed-eating Peromyscus, cyclicity may be regulated, in part, from low to high trophic levels. Deceased: Jerry O. Wolff  相似文献   

19.
Populations of red grouse ( Lagopus lagopus scoticus ) undergo regular multiannual cycles in abundance. The 'kinship hypothesis' posits that such cycles are caused by changes in kin structure among territorial males producing delayed density-dependent changes in aggressiveness, which in turn influence recruitment and regulate density. The kinship hypothesis makes several specific predictions about the levels of kinship, aggressiveness and recruitment through a population cycle: (i) kin structure will build up during the increase phase of a cycle, but break down prior to peak density; (ii) kin structure influences aggressiveness, such that there will be a negative relationship between kinship and aggressiveness over the years; (iii) as aggressiveness regulates recruitment and density, there will be a negative relationship between aggressiveness in one year and both recruitment and density in the next; (iv) as kin structure influences recruitment via an affect on aggressiveness, there will be a positive relationship between kinship in one year and recruitment the next. Here we test these predictions through the course of an 8-year cycle in a natural population of red grouse in northeast Scotland, using microsatellite DNA markers to resolve changing patterns of kin structure, and supra-orbital comb height of grouse as an index of aggressiveness. Both kin structure and aggressiveness were dynamic through the course of the cycle, and changing patterns were entirely consistent with the expectations of the kinship hypothesis. Results are discussed in relation to potential drivers of population regulation and implications of dynamic kin structure for population genetics.  相似文献   

20.
Population structure, in terms of the body mass, condition, sex and reproductive status of individuals, has been found to vary in phase with population density in cyclic populations of microtine rodents. Because sustained population cycles involve delayed density dependent changes in the population growth rate, we would expect at least some life history traits also to depend on past densities. Detailed, long-term studies of changes in vole life history traits are however few, and are largely restricted to northern Europe. In view of the uncertainty as to whether the cyclic microtine populations of western Europe represent the same phenomenon as those of northern Europe, we studied temporal variation in the structure of a clearly cyclic population of the common vole Microtus arvalis Pallas, in the cereal plains of mid-western France. Our data set contains seasonal, individual-level data from long-term, large-scale trapping covering four entire population cycles. We found considerable cyclic variation in population structure in spring (April), but less so in summer (June). In spring of post-peak years, animals were of low body weight and body condition (particularly females), litter sizes were smaller and there was a reduction in the proportion of breeders. All of these could be proximal drivers of increased mortality rates, or decreased birth rates, contributing to the population declines. Few life history traits, however, showed direct density dependent variation, and none of the traits studied here showed delayed density dependence. We have shown declines in the fecundity and body condition of voles from a western European population that coincides with, and may be a proximal cause of, cyclic declines in population density. Closer attention to proximal causes, by which ecological processes drive cycles, could clarify the extent to which microtine cycles across Europe represent a single phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号