首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our abilities to detect and enumerate pollutant-biodegrading microorganisms in the environment are rapidly advancing with the development of molecular genetic techniques. Techniques based on multiplex and real-time PCR amplification of aromatic oxygenase genes were developed to detect and quantify aromatic catabolic pathways, respectively. PCR primer sets were identified for the large subunits of aromatic oxygenases from alignments of known gene sequences and tested with genetically well-characterized strains. In all, primer sets which allowed amplification of naphthalene dioxygenase, biphenyl dioxygenase, toluene dioxygenase, xylene monooxygenase, phenol monooxygenase, and ring-hydroxylating toluene monooxygenase genes were identified. For each primer set, the length of the observed amplification product matched the length predicted from published sequences, and specificity was confirmed by hybridization. Primer sets were grouped according to the annealing temperature for multiplex PCR permitting simultaneous detection of various genotypes responsible for aromatic hydrocarbon biodegradation. Real-time PCR using SYBR green I was employed with the individual primer sets to determine the gene copy number. Optimum polymerization temperatures for real-time PCR were determined on the basis of the observed melting temperatures of the desired products. When a polymerization temperature of 4 to 5 degrees C below the melting temperature was used, background fluorescence signals were greatly reduced, allowing detection limits of 2 x 10(2) copies per reaction mixture. Improved in situ microbial characterization will provide more accurate assessment of pollutant biodegradation, enhance studies of the ecology of contaminated sites, and facilitate assessment of the impact of remediation technologies on indigenous microbial populations.  相似文献   

2.
Total community DNA from 29 noncontaminated soils and soils impacted by petroleum hydrocarbons and chloro-organics from Antarctica and Brazil were screened for the presence of nine catabolic genes, encoding alkane monooxygenase or aromatic dioxygenases, from known bacterial biodegradation pathways. Specific primers and probes targeting alkane monooxygenase genes were derived from Pseudomonas putida ATCC 29347 (Pp alkB), Rhodococcus sp. strain Q15 (Rh alkB1, Rh alkB2), and Acinetobacter sp. ADP-1 (Ac alkM). In addition, primers and probes detecting aromatic dioxygenase genes were derived from P. putida ATCC 17484 (ndoB), P. putida F1 (todC1), P. putida ATCC 33015 (xylE and cat23), and P. pseudoalcaligenes KF707 (bphA). The primers and probes were used to analyze total community DNA extracts by using PCR and hybridization analysis. All the catabolic genes, except the Ac alkM, were detected in contaminated and control soils from both geographic regions, with a higher frequency in the Antarctic soils. The alkane monooxygenase genes, Rh alkB1 and Rh alkB2, were the most frequently detected alk genes in both regions, while Pp alkB was not detected in Brazil soils. Genes encoding the aromatic dioxygenases toluene dioxygenase (todC1) and biphenyl dioxygenase (bphA) were the most frequently detected in Antarctica, and todC1 and catechol-2,3-dioxygenase (cat23) were the most frequent in Brazil soils. Hybridization analysis confirmed the PCR results, indicating that the probes used had a high degree of homology to the genes detected in the soil extracts and were effective in detecting biodegradative potential in the indigenous microbial population.  相似文献   

3.
A gene probe for the detection of polycyclic aromatic hydrocarbon (PAH) induced nidB and nidA dioxygenase genes has been designed from Mycobacteria JLS, KMS, and MCS. The probe detects a catabolic gene involved in the initial steps of PAH biodegradation in mycobacteria. The gene probe is comprised of three PCR primer sets designed to detect the genes that code for two subunits of the PAH induced dioxygenase enzyme within PAH-degrading mycobacteria. The probe was built by combining three primer sets with a DNA extraction procedure that was designed to lyse the gram-positive mycobacteria cells while in the soil matrix and remove PCR inhibitors. The probe was tested on PAH contaminated soils undergoing bioremediation through landfarming and uncontaminated soils from the same site. The PAH gene probe results demonstrate that the dioxygenase genes can be detected in soils. Sequencing the nidA and nidBPCR products verified that the genes were detected in soil. Comparisons of the sequences obtained from the soil probe to seven known nid gene sequences from various PAH-degrading mycobacteria showed between 97 and 99% nucleotide matches with the nidB gene and 95 and 99% matches with the nidA gene.  相似文献   

4.
Flow-through aquifer columns were operated for 12 weeks to evaluate the benefits of aerobic biostimulation for the bioremediation of source-zone soil contaminated with chlorobenzenes (CBs). Quantitative Polymerase Chain Reaction (qPCR) was used to measure the concentration of total bacteria (16S rRNA gene) and oxygenase genes involved in the biodegradation of aromatic compounds (i.e., toluene dioxygenase, ring hydroxylating monooxygenase, naphthalene dioxygenase, phenol hydroxylase, and biphenyl dioxygenase). Monochlorobenzene, which is much more soluble than dichlorobenzenes, was primarily removed by flushing, and biostimulation showed little benefit. In contrast, dichlorobenzene removal was primarily due to biodegradation, and the removal efficiency was much higher in oxygen-amended columns compared to a control column. To our knowledge, this is the first report that oxygen addition can enhance CB source-zone soil bioremediation. Analysis by qPCR showed that whereas the biphenyl and toluene dioxygenase biomarkers were most abundant, increases in the concentration of the phenol hydroxylase gene reflected best the higher dichlorobenzene removal due to aerobic biostimulation. This suggests that quantitative molecular microbial ecology techniques could be useful to assess CB source-zone bioremediation performance.  相似文献   

5.
A quantitative real-time polymerase chain reaction (PCR) assay was developed for monitoring naphthalene degradation during bioremediation processes. The phylogenetic affiliations of known naphthalene-hydroxylating dioxygenase genes were determined to target functionally related bacteria, and degenerate primers were designed on the basis of the close relationships among dioxygenase genes identified from naphthalene-degrading Proteobacteria. Evaluation of the amplification specificity demonstrated that the developed real-time PCR assay represents a rapid, precise means for the group-specific enumeration of naphthalene-degrading bacteria. According to validation with bacterial pure cultures, the assay discriminated between the targeted group of naphthalene dioxygenase sequences and genes in other naphthalene or aromatic hydrocarbon-degrading bacterial strains. Specific amplification of gene fragments sharing a high sequence similarity with the genes included in the assay design was also observed in soil samples recovered from large-scale remediation processes. The target genes could be quantified reproducibly at over five orders of magnitude down to 3 × 102 gene copies. To investigate the suitability of the assay in monitoring naphthalene biodegradation, the assay was applied in enumerating the naphthalene dioxygenase genes in a soil slurry microcosm. The results were in good agreement with contaminant mineralization and dot blot quantification of nahAc gene copies. Furthermore, the real-time PCR assay was found to be more sensitive than hybridization-based analysis.  相似文献   

6.
Rapid detection and quantitative assessment of specific microbial species in environmental samples is desirable for monitoring changes in ecosystems and for tracking natural or introduced microbial species during bioremediation of contaminated sites. In the interests of developing rapid tests for hydrocarbon-degrading bacteria, species-specific PCR primer sets have been developed for Pseudomonas aeruginosa, Stentrophomonas (Xanthomonas) maltophilia, and Serratia marsescens. Highly variable regions of the 16S rRNA gene were used to design these primer sets. The amplification products of these primer sets have been verified and validated with hemi-nested PCR and with ligase chain reaction (LCR) techniques, and have been applied to the analyses of environmental water samples. These species-specific primer sets were also chosen to amplify in conjunction with a universal set of PCR primers chosen from highly conserved neighboring sequences in the same gene. These multiplex or competitive PCR procedures enable testing with an internal marker and/or the quantitative estimation of the relative proportion of the microbial community that any one of these species occupies. In addition, this universal PCR primer set amplified the same size amplicon from a wide spectrum of procaryotic and eucaryotic organisms and may have potential in earth biota analyses.  相似文献   

7.
A microbial mixed culture able to degrade naphtha solvent, a model of hydrocarbon aromatic mixture, was isolated from a hydrocarbon-polluted soil. Composition of the population was monitored by phenotypic and molecular methods applied on soil DNA, on whole enrichment culture DNA, and on 85 isolated strains. Strains were characterized for their 16S rDNA restriction profiles and for their random amplified polymorphic DNA profiles. Catabolic capabilities were monitored by phenotypic traits and by PCR assays for the presence of the catabolic genes methyl mono-oxygenase ( xylA, M), catechol 2,3 dioxygenase (xylE) and toluene dioxygenase (todC1) of TOL and TOD pathways. Different haplotypes belonging to Pseudomonas putida, Ps. aureofaciens and Ps. aeruginosa were found to degrade aromatic compounds and naphtha solvent. The intrinsic catabolic activity of the microbial population of the polluted site was detected by PCR amplification of the xylE gene directly from soil DNA.  相似文献   

8.
目的:建立并初步评价一种针对重要肠道病原菌的多重PCR 基因芯片检测方法。方法:对筛选出的特异引物进行多重PCR优化,将引物分别按种属内混合和种属间混合的方案排查引物间的竞争性抑制现象,再将不同菌属的模板混合,用相对应的混合引物扩增,探寻高效特异的引物组合。分别掺入和不掺入荧光素,验证其对混合PCR反应的影响,并与芯片杂交,探寻多重PCR扩增效率对芯片杂交的影响。分析不同数量引物组合产生的杂交结果,筛选出无交叉反应的最优引物组合。结果:种属内引物混合均得到特异性扩增结果。种属间混合霍乱弧菌和空肠弯曲菌得到部分预期条带,随着混合引物数量的增加,交叉抑制现象也增多。杂交信号强度随多重PCR扩增效率的增加而增强。反应中掺入荧光素的扩增条带产量低于无荧光素的产物。可将35对混合引物拆成3个体系分别标记样品,以避免假阴性结果。结论:PCR反应中掺入荧光素降低扩增效率和杂交效率,但并不影响对杂交结果的判读和数据分析。基因芯片杂交信号强度取决于多重PCR的扩增效率。肠道病原菌多重PCR 基因芯片检测方法具有较高的特异性,混合PCR可以分别按照种属内和种属间的引物组合方案用于多病原的筛检。该基因芯片检测可以采用3个引物体系完成样品标记。  相似文献   

9.
Herein we present a simple, cost-effective TopDown (TD) gene synthesis method that eliminates the interference between the polymerase chain reactions (PCR) assembly and amplification in one-step gene synthesis. The method involves two key steps: (i) design of outer primers and assembly oligonucleotide set with a melting temperature difference of >10°C and (ii) utilization of annealing temperatures to selectively control the efficiencies of oligonucleotide assembly and full-length template amplification. In addition, we have combined the proposed method with real-time PCR to analyze the step-wise efficiency and the kinetics of the gene synthesis process. Gel electrophoresis results are compared with real-time fluorescence signals to investigate the effects of oligonucleotide concentration, outer primer concentration, stringency of annealing temperature, and number of PCR cycles. Analysis of the experimental results has led to insights into the gene synthesis process. We further discuss the conditions for preventing the formation of spurious DNA products. The TD real-time gene synthesis method provides a simple and efficient method for assembling fairly long DNA sequence, and aids in optimizing gene synthesis conditions. To our knowledge, this is the first report that utilizes real-time PCR for gene synthesis.  相似文献   

10.
The polymerase chain reaction (PCR) is sensitive to mismatches between primer and template, and mismatches can lead to inefficient amplification of targeted regions of DNA template. In PCRs in which a degenerate primer pool is employed, each primer can behave differently. Therefore, inefficiencies due to different primer melting temperatures within a degenerate primer pool, in addition to mismatches between primer binding sites and primers, can lead to a distortion of the true relative abundance of targets in the original DNA pool. A theoretical analysis indicated that a combination of primer-template and primer-amplicon interactions during PCR cycles 3–12 is potentially responsible for this distortion. To test this hypothesis, we developed a novel amplification strategy, entitled “Polymerase-exonuclease (PEX) PCR”, in which primer-template interactions and primer-amplicon interactions are separated. The PEX PCR method substantially and significantly improved the evenness of recovery of sequences from a mock community of known composition, and allowed for amplification of templates with introduced mismatches near the 3’ end of the primer annealing sites. When the PEX PCR method was applied to genomic DNA extracted from complex environmental samples, a significant shift in the observed microbial community was detected. Furthermore, the PEX PCR method provides a mechanism to identify which primers in a primer pool are annealing to target gDNA. Primer utilization patterns revealed that at high annealing temperatures in the PEX PCR method, perfect match annealing predominates, while at lower annealing temperatures, primers with up to four mismatches with templates can contribute substantially to amplification. The PEX PCR method is simple to perform, is limited to PCR mixes and a single exonuclease step which can be performed without reaction cleanup, and is recommended for reactions in which degenerate primer pools are used or when mismatches between primers and template are possible.  相似文献   

11.
Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.  相似文献   

12.
We designed a real-time PCR assay able to recognize dioxygenase large-subunit gene sequences with more than 90% similarity to the Ralstonia sp. strain U2 nagAc gene (nagAc-like gene sequences) in order to study the importance of organisms carrying these genes in the biodegradation of naphthalene. Sequencing of PCR products indicated that this real-time PCR assay was specific and able to detect a variety of nagAc-like gene sequences. One to 100 ng of contaminated-sediment total DNA in 25-μl reaction mixtures produced an amplification efficiency of 0.97 without evident PCR inhibition. The assay was applied to surficial freshwater sediment samples obtained in or in close proximity to a coal tar-contaminated Superfund site. Naphthalene concentrations in the analyzed samples varied between 0.18 and 106 mg/kg of dry weight sediment. The assay for nagAc-like sequences indicated the presence of (4.1 ± 0.7) × 103 to (2.9 ± 0.3) × 105 copies of nagAc-like dioxygenase genes per μg of DNA extracted from sediment samples. These values corresponded to (1.2 ± 0.6) × 105 to (5.4 ± 0.4) × 107 copies of this target per g of dry weight sediment when losses of DNA during extraction were taken into account. There was a positive correlation between naphthalene concentrations and nagAc-like gene copies per microgram of DNA (r = 0.89) and per gram of dry weight sediment (r = 0.77). These results provide evidence of the ecological significance of organisms carrying nagAc-like genes in the biodegradation of naphthalene.  相似文献   

13.
We show that using low denaturation temperatures (80–88°C) during ligation mediated PCR (LM PCR) of bacterial DNA leads to the amplification of limited sets of the less stable DNA fragments. A set of electrophoretic patterns of such fragments obtained at different denaturation temperatures forms the PCR melting profile (PCR MP). A single pattern obtained for a given temperature and a set of patterns arising after application of several denaturation temperatures (PCR MP) are very specific for the given bacterial genome and may be used for strain characterisation and differentiation. The method may also be used for amplification and isolation of the less stable DNA fragments in a genome.  相似文献   

14.
Kalendar R  Lee D  Schulman AH 《Genomics》2011,98(2):137-144
The polymerase chain reaction is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. We have developed and tested efficient tools for PCR primer and probe design, which also predict oligonucleotide properties based on experimental studies of PCR efficiency. The tools provide comprehensive facilities for designing primers for most PCR applications and their combinations, including standard, multiplex, long-distance, inverse, real-time, unique, group-specific, bisulphite modification assays, Overlap-Extension PCR Multi-Fragment Assembly, as well as a programme to design oligonucleotide sets for long sequence assembly by ligase chain reaction. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. It calculates the melting temperature for standard and degenerate oligonucleotides including LNA and other modifications, provides analyses for a set of primers with prediction of oligonucleotide properties, dimer and G-quadruplex detection, linguistic complexity, and provides a dilution and resuspension calculator.  相似文献   

15.
16.
Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T m) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100?% for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100?%, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.  相似文献   

17.
The ability to select short DNA oligonucleotide sequences capable of binding solely to their intended target is of great importance in developing nucleic acid based detection technologies. Applications such as multiplex PCR rely on primers binding to unique regions in a genome. Competing side reactions with other primer pairs or template DNA decrease PCR efficiency: Freely available primer design software such as Primer3 screens for potential hairpin and primer-dimer interactions while selecting a single primer pair. The development of multiplex PCR assays (in the range of 5 to 20 loci) requires the screening of all primer pairs for potential cross-reactivity. However, a logistical problem results due to the number of total number of comparisons required. Comparing the primer set for a 10-plex assay (20 total primer sequences) results in 210 primer-primer combinations that must be screened. The ability to screen sets of candidate oligomers rapidly for potential cross-reactivity reduces overall assay devlelopment time. Here we report the application of a familiar sliding algorithm for comparing two strands of DNA in an overlapping fashion. The algorithm has been employed in a software package wherein the user can compare multiple sequences in a single computational run. After the screening is completed, a score is assigned to potential duplex interactions exceeding a user-defined threshold. Additional criteria of predicted melting temperature (Tm) and free energy of melting (deltaG) are included for further ranking. Sodium counterion and total stand concentrations can be adjusted for the Tm and deltaG calculations. The predicted interactions are saved in a text file for further evaluation.  相似文献   

18.
Three particulate methane monooxygenase PCR primer sets (A189-A682, A189-A650, and A189-mb661) were investigated for their ability to assess methanotroph diversity in soils from three sites, i.e., heath, oak, and sitka, each of which was capable of oxidizing atmospheric concentrations of methane. Each PCR primer set was used to construct a library containing 50 clones from each soil type. The clones from each library were grouped by restriction fragment length polymorphism, and representatives from each group were sequenced and analyzed. Libraries constructed with the A189-A682 PCR primer set were dominated by amoA-related sequences or nonspecific PCR products with nonsense open reading frames. The primer set could not be used to assess methanotroph diversity in these soils. A new pmoA-specific primer, A650, was designed in this study. The A189-A650 primer set demonstrated distinct biases both in clone library analysis and when incorporated into denaturing gradient gel electrophoresis analysis. The A189-mb661 PCR primer set demonstrated the largest retrieval of methanotroph diversity of all of the primer sets. However, this primer set did not retrieve sequences linked with novel high-affinity methane oxidizers from the soil libraries, which were detected using the A189-A650 primer set. A combination of all three primer sets appears to be required to examine both methanotroph diversity and the presence of novel methane monooxygenase sequences.  相似文献   

19.
A small-scale functional gene array containing 15 functional gene probes targeting aliphatic and aromatic hydrocarbon biodegradation pathways was used to investigate the effect of a pilot-scale air sparging and nutrient infiltration treatment on hydrocarbon biodegradation in creosote-contaminated groundwater. Genes involved in the different phases of polycyclic aromatic hydrocarbon (PAH) biodegradation were detected with the functional gene array in the contaminant plume, thus indicating the presence of intrinsic biodegradation potential. However, the low aerobic fluorescein diacetate hydrolysis, the polymerase chain reaction (PCR) amplification of 16S rRNA genes closely similar to sulphate-reducing and denitrifying bacteria and the negligible decrease in contaminant concentrations showed that aerobic PAH biodegradation was limited in the anoxic groundwater. Increased abundance of PAH biodegradation genes was detected by functional gene array in the monitoring well located at the rear end of the biostimulated area, which indicated that air sparging and nutrient infiltration enhanced the intrinsic, aerobic PAH biodegradation. Furthermore, ten times higher naphthalene dioxygenase gene copy numbers were detected by real-time PCR in the biostimulated area, which was in good agreement with the functional gene array data. As a result, functional gene array analysis was demonstrated to provide a potential tool for evaluating the efficiency of the bioremediation treatment for enhancing hydrocarbon biodegradation in field-scale applications. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background  

A fast and simple two-step multiplex real-time PCR assay has been developed to replace the traditional, laborious Salmonella serotyping procedure. Molecular beacons were incorporated into the assay as probes for target DNA. Target sequences were regions of the invA, prot6E and fliC genes specific for Salmonella spp. Salmonella Enteritidis and Salmonella Typhimurium, respectively, the two most clinically relevant serotypes. An internal amplification positive control was included in the experiment to ensure the optimal functioning of the PCR and detect possible PCR inhibition. Three sets of primers were used for the amplification of the target sequences. The results were compared to those of the Kauffmann-White antigenic classification scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号