首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Disrupted-in-schizophrenia 1 (DISC1) is a gene disrupted by a (1:1) (q42.1;q14.3) translocation that segregates with major psychiatric disorders in a Scottish family. To elucidate how DISC1 confers susceptibility to psychiatric disorders, identification of the molecules, which bind to the domain close to the translocation breakpoint in the DISC1 gene, was performed and fasciculation and elongation protein zeta-1 (Fez1), a novel DISC1-interacting protein, termed DISC1-binding zinc-finger protein (DBZ) and Kendrin were identified. The DISC1-Fez1 interaction is up-regulated by nerve growth factor (NGF) and involved in neurite extension. Transient dissociation of the DISC1-DBZ interaction by pituitary adenylate cyclase-activating polypeptide (PACAP) causes neurite extension. Furthermore, single-nucleotide polymorphisms association studies in a Japanese population have shown the relation of the Fez1, PACAP and PACAP receptor (PAC1) genes to schizophrenia. In schizophrenia with DISC1 translocation carrier, the DISC1-Fez1 and DISC1-DBZ interaction is disrupted, and it is likely that neural circuit formation remains immature, suggesting that schizophrenia is a neurodevelopmental disease. On the other hand, the DISC1-Kendrin interaction is suggested to be involved in microtubule network formation and an association between single-nucleotide polymorphisms of the Kendrin gene and bipolar disease has also been suggested in a Japanese population. This demonstrates that a part of bipolar disease is also a neurodevelopmental disorder.  相似文献   

2.
Disrupted-in Schizophrenia 1 (DISC1), a susceptibility gene for major mental disorders, encodes a scaffold protein that has a multifaceted impact on neuronal development. How DISC1 regulates different aspects of neuronal development is not well understood. Here, we show that Fasciculation and Elongation Protein Zeta-1 (FEZ1) interacts with DISC1 to synergistically regulate dendritic growth of newborn neurons in the adult mouse hippocampus, and that this pathway complements a parallel DISC1-NDEL1 interaction that regulates cell positioning and morphogenesis of newborn neurons. Furthermore, genetic association analysis of two independent cohorts of schizophrenia patients and healthy controls reveals an epistatic interaction between FEZ1 and DISC1, but not between FEZ1 and NDEL1, for risk of schizophrenia. Our findings support a model in which DISC1 regulates distinct aspects of neuronal development through its interaction with different intracellular partners and such epistasis may contribute to increased risk for schizophrenia.  相似文献   

3.
Schizophrenia, schizoaffective disorder, and bipolar disorder are common psychiatric disorders with high heritabilities and variable phenotypes. The Disrupted in Schizophrenia 1 (DISC1) gene, on chromosome 1q42, was originally discovered and linked to schizophrenia in a Scottish kindred carrying a balanced translocation that disrupts DISC1 and DISC2. More recently, DISC1 was linked to schizophrenia, broadly defined, in the general Finnish population, through the undertransmission to affected women of a common haplotype from the region of intron 1/exon 2. We present data from a case-control study of a North American white population, confirming the underrepresentation of a common haplotype of the intron 1/exon 2 region in individuals with schizoaffective disorder. Multiple haplotypes contained within four haplotype blocks extending between exon 1 and exon 9 are associated with schizophrenia, schizoaffective disorder, and bipolar disorder. We also find overrepresentation of the exon 9 missense allele Phe607 in schizoaffective disorder. These data support the idea that these apparently distinct disorders have at least a partially convergent etiology and that variation at the DISC1 locus predisposes individuals to a variety of psychiatric disorders.  相似文献   

4.
Disrupted in Schizophrenia-1 (DISC1) is a candidate gene for psychiatric disorders and has many roles during brain development. Common DISC1 polymorphisms (variants) are associated with neuropsychiatric phenotypes including altered cognition, brain structure, and function; however, it is unknown how this occurs. Here, we demonstrate using mouse, zebrafish, and human model systems that DISC1 variants are loss of function in Wnt/GSK3β signaling and disrupt brain development. The DISC1 variants A83V, R264Q, and L607F, but not S704C, do not activate Wnt signaling compared with wild-type DISC1 resulting in decreased neural progenitor proliferation. In zebrafish, R264Q and L607F could not rescue DISC1 knockdown-mediated aberrant brain development. Furthermore, human lymphoblast cell lines endogenously expressing R264Q displayed impaired Wnt signaling. Interestingly, S704C inhibited the migration of neurons in the developing neocortex. Our data demonstrate DISC1 variants impair Wnt signaling and brain development and elucidate?a possible mechanism for their role in neuropsychiatric phenotypes.  相似文献   

5.
We re-annotated the interacting partners of the neuronal scaffold protein DISC1 using a knowledge-based approach that incorporated recent protein interaction data and published literature to. This revealed two highly connected networks. These networks feature cellular function and maintenance, and cell signaling. Of potentially greatest interest was the novel finding of a high degree of connectivity between the DISC1 scaffold protein, linked to psychiatric illness, and huntingtin, the protein which is mutated in Huntington's disease. The potential link between DISC1, huntingtin and their interacting partners may open new areas of research into the effects of pathway dysregulation in severe neurological disorders.  相似文献   

6.
The causes of schizophrenia remain elusive. In a large Scottish pedigree, a balanced translocation t(1;11) (q42.1;q14.3) disrupting the DISC1 and DISC2 genes segregates with major mental illness, including schizophrenia and unipolar depression. A frame-shift carboxyl-terminal deletion was reported in DISC1 in an American family, but subsequently found in two controls. A few common structural variants have been associated with less than a 2-fold increased risk for schizophrenia, but replication has not been uniform. No large scale case-control mutation study has been performed. We have analyzed the regions of likely functional significance in the DISC1 gene in 288 patients with schizophrenia and 288 controls (5 megabases of genomic sequence analyzed). Six patients with schizophrenia were heterozygous for ultra-rare missense variants not found in the 288 controls (p = 0.015) and shown to be ultra-rare by their absence in a pool of 10,000 control alleles. We conclude that ultra-rare structural variants in DISC1 are associated with an attributable risk of about 2% for schizophrenia. In addition, we confirm that two common structural variants (Q264R and S704C) elevate the risk for schizophrenia slightly (odds ratio 1.3, 95% CI: 1.0-1.7). DISC1 illustrates how common/moderate risk alleles suggested by the HapMap project might be followed up by resequencing to identify genes with high risk, low frequency alleles of clinical relevance.  相似文献   

7.
精神分裂症断裂基因1(disrupted in schizophrenia 1,DISC1)是多种精神疾病中的一个关键的遗传学危险因素。DISC1能够与磷酸二酯酶4(phosphodiesterase 4,PDE4)相互作用形成复合物,这可能是一些精神疾病的关键分子机制。PDE4能够水解cAMP,DISC1可通过调节PDE4的活性进而发挥调节cAMP在细胞内的信号转导功能。已有研究证实,在一些精神疾病患者中,DISC1和PDE4基因表达均发生了变化。DISC1突变导致其表达产物与PDE4的相互作用减弱,结果之一是降低脑PDE4的活性。DISC1与PDE4之间的相互作用的改变可能是精神分裂症及抑郁症等疾病症状产生的基础。  相似文献   

8.
Behavioral phenotypes of Disc1 missense mutations in mice   总被引:6,自引:0,他引:6  
To support the role of DISC1 in human psychiatric disorders, we identified and analyzed two independently derived ENU-induced mutations in Exon 2 of mouse Disc1. Mice with mutation Q31L showed depressive-like behavior with deficits in the forced swim test and other measures that were reversed by the antidepressant bupropion, but not by rolipram, a phosphodiesterase-4 (PDE4) inhibitor. In contrast, L100P mutant mice exhibited schizophrenic-like behavior, with profound deficits in prepulse inhibition and latent inhibition that were reversed by antipsychotic treatment. Both mutant DISC1 proteins exhibited reduced binding to the known DISC1 binding partner PDE4B. Q31L mutants had lower PDE4B activity, consistent with their resistance to rolipram, suggesting decreased PDE4 activity as a contributory factor in depression. This study demonstrates that Disc1 missense mutations in mice give rise to phenotypes related to depression and schizophrenia, thus supporting the role of DISC1 in major mental illness.  相似文献   

9.
The Disrupted‐in‐Schizophrenia 1 (DISC1) locus on human chromosome 1 was identified as a consequence of its involvement in a balanced translocation (1;11)(q42.1;q14.3) segregating with major psychiatric disorders in a Scottish family. Recently a comprehensive meta‐analysis of genome‐wide association scan data found no evidence that common variants of DISC1 (1q42.1) are associated with schizophrenia. Our aim was to test for association of variants in the 11q14.3 translocation region with schizophrenia. The 11q14.3 region was examined by meta‐analysis of genome‐wide scan data made available by the Genetic Association Information Network (GAIN) and other investigators (non‐GAIN) through dbGap. P‐values were adjusted for multiple testing using the false discovery rate (FDR) approach. There were no single‐nucleotide polymorphisms (SNPs) significant (P < 0.05) after correction for multiple testing in the combined schizophrenia dataset. However, one SNP (rs2509382) was significantly associated in the male‐only analysis with PFDR = 0.024. Whilst the relevance of the (1;11)(q42.1;q14.3) translocation to psychiatric disorders is currently specific to the Scottish family, genetic material in the chromosome 11 region may contain risk variants for psychiatric disorders in the wider population. The association found in this region does warrant follow‐up analysis in further sample sets .  相似文献   

10.
DISC1 (Disrupted in schizophrenia-1) plays essential roles in neuronal proliferation, neuronal migration and axon guidance and has been implicated in schizophrenia and related psychiatric disorders. DISC1 forms a functional complex with nuclear distribution element-like protein-1 (NDEL1), a key component that regulates microtubule organization during cell division and neuronal migration. DISC1 polymorphisms at the binding interface of DISC1-NDEL1 complex have been implicated in schizophrenia. However, it is unknown how schizophrenia risk polymorphisms perturb its interaction with NDEL1 and how they change the inherent biochemical properties of DISC1. Here, we characterize the oligomerization and binding property of DISC1 and its natural schizophrenia risk variant, S704C. Our results show that DISC1 forms octamers via dimers as building blocks and directly interacts with tetramers of NDEL1. The schizophrenia risk variant S704C affects the formation of octamers of DISC1 and exhibits higher-order self-oligomerization. However, the observed formation of new oligomeric species did not influence its binding with NDEL1. These results suggest that the improper oligomeric assembly of DISC1-S704C may underlie the observed phenotypic variation due to the polymorphism.  相似文献   

11.
Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD). Accumulated damaged mitochondria, which are associated with impaired mitophagy, contribute to neurodegeneration in AD. We show levels of Disrupted‐in‐schizophrenia‐1 (DISC1), which is genetically associated with psychiatric disorders and AD, decrease in the brains of AD patients and transgenic model mice and in Aβ‐treated cultured cells. Disrupted‐in‐schizophrenia‐1 contains a canonical LC3‐interacting region (LIR) motif (210FSFI213), through which DISC1 directly binds to LC3‐I/II. Overexpression of DISC1 enhances mitophagy through its binding to LC3, whereas knocking‐down of DISC1 blocks Aβ‐induced mitophagy. We further observe overexpression of DISC1, but not its mutant (muFSFI) which abolishes the interaction of DISC1 with LC3, rescues Aβ‐induced mitochondrial dysfunction, loss of spines, suppressed long‐term potentiation (LTP). Overexpression of DISC1 via adeno‐associated virus (serotype 8, AAV8) in the hippocampus of 8‐month‐old APP/PS1 transgenic mice for 4 months rescues cognitive deficits, synaptic loss, and Aβ plaque accumulation, in a way dependent on the interaction of DISC1 with LC3. These results indicate that DISC1 is a novel mitophagy receptor, which protects synaptic plasticity from Aβ accumulation‐induced toxicity through promoting mitophagy.  相似文献   

12.

Background

The PTPRA gene, which encodes the protein RPTP-α, is critical to neurodevelopment. Previous linkage studies, genome-wide association studies, controlled expression analyses and animal models support an association with both schizophrenia and autism spectrum disorders, both of which share a substantial portion of genetic risks.

Methods

We sequenced the protein-encoding areas of the PTPRA gene for single nucleotide polymorphisms or small insertions/deletions (InDel) in 382 schizophrenia patients. To validate their association with the disorders, rare (minor allele frequency <1%), missense mutations as well as one InDel in the 3′UTR region were then genotyped in another independent sample set comprising 944 schizophrenia patients, 336 autism spectrum disorders patients, and 912 healthy controls.

Results

Eight rare mutations, including 3 novel variants, were identified during the mutation-screening phase. In the following association analysis, L59P, one of the two missense mutations, was only observed among patients of schizophrenia. Additionally, a novel duplication in the 3′UTR region, 174620_174623dupTGAT, was predicted to be located within a Musashi Binding Element.

Major Conclusions

No evidence was seen for the association of rare, missense mutations in the PTPRA gene with schizophrenia or autism spectrum disorders; however, we did find some rare variants with possibly damaging effects that may increase the susceptibility of carriers to the disorders.  相似文献   

13.
Neurobiology of schizophrenia   总被引:15,自引:0,他引:15  
With its hallucinations, delusions, thought disorder, and cognitive deficits, schizophrenia affects the most basic human processes of perception, emotion, and judgment. Evidence increasingly suggests that schizophrenia is a subtle disorder of brain development and plasticity. Genetic studies are beginning to identify proteins of candidate genetic risk factors for schizophrenia, including dysbindin, neuregulin 1, DAOA, COMT, and DISC1, and neurobiological studies of the normal and variant forms of these genes are now well justified. We suggest that DISC1 may offer especially valuable insights. Mechanistic studies of the properties of these candidate genes and their protein products should clarify the molecular, cellular, and systems-level pathogenesis of schizophrenia. This can help redefine the schizophrenia phenotype and shed light on the relationship between schizophrenia and other major psychiatric disorders. Understanding these basic pathologic processes may yield novel targets for the development of more effective treatments.  相似文献   

14.
The centrosome is crucial for neuronal migration and polarisation, processes that are disrupted in a number of neurodevelopmental disorders including schizophrenia. Mutation of DISC1, associated with increased risk of schizophrenia and psychiatric illness, has been shown to affect the centrosome, but the mechanisms involved have not been elucidated. In this issue of EMBO Reports, Fukuda and colleagues demonstrate that a DISC1‐interacting protein, CAMDI, suppresses the activity of the histone deacetylase HDAC6, thereby promoting centrosome stability and consequently neuronal migration 1 . Loss of CAMDI leads to cortical migration defects and behavioural phenotypes that model autism spectrum disorders and which can be rescued by inhibition of HDAC6. The study provides novel mechanistic insight into centrosome regulation in neurodevelopment.  相似文献   

15.
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.  相似文献   

16.
The Disrupted-in-Schizophrenia-1 (DISC1) gene has been implicated in both schizophrenia and bipolar disorder by linkage and genetic association studies. Altered prefrontal cortical function is a pathophysiological feature of both disorders, and we have recently shown that variation in DISC1 modulates prefrontal activation in healthy volunteers. Our goal was to examine the influence of the DISC1 polymorphism Cys704Ser on prefrontal function in schizophrenia and bipolar disorder. From 2004 to 2008, patients with schizophrenia (N = 44), patients with bipolar disorder (N = 35) and healthy volunteers (N = 53) were studied using functional magnetic resonance imaging while performing a verbal fluency task. The effect of Cys704Ser on cortical activation was compared between groups as Cys704 carriers vs. Ser704 homozygotes. In contrast to the significant effect on prefrontal activation we had previously found in healthy subjects, no significant effect of Cys704Ser was detected in this or any other region in either the schizophrenia or bipolar groups. When controls were compared with patients with schizophrenia, there was a diagnosis by genotype interaction in the left middle/superior frontal gyrus [family-wise error (FWE) P = 0.002]. In this region, Ser704/ser704 controls activated more than Cys704 carriers, and there was a trend in the opposite direction in schizophrenia patients. In contrast to its effect in healthy subjects, variation in DISC1 Cys704Ser704 genotype was not associated with altered prefrontal activation in patients with schizophrenia or bipolar disorder. The absence of an effect in patients may reflect interactions of the effects of DISC1 genotype with the effects of other genes associated with these disorders, and/or with the effects of the disorders on brain function.  相似文献   

17.
Carsten Korth 《朊病毒》2012,6(2):134-141
Chronic mental diseases (CMD) like the schizophrenias are progressive diseases of heterogenous but poorly understood biological origin. An imbalance in proteostasis is a hallmark of dysfunctional neurons, leading to impaired clearance and abnormal deposition of protein aggregates. Thus, it can be hypothesized that unbalanced proteostasis in such neurons may also lead to protein aggregates in schizophrenia. These protein aggregates, however, would be more subtle then in the classical neurodegenerative diseases and as such have not yet been detected. The DISC1 (Disrupted-in-schizophrenia 1) gene is considered among the most promising candidate genes for CMD having been identified as linked to CMD in a Scottish pedigree and having since been found to associate to various phenotypes of CMD. We have recently demonstrated increased insoluble DISC1 protein in the cingular cortex in approximately 20% of cases of CMD within the widely used Stanley Medical Research Institute Consortium Collection. Surprisingly, in vitro, DISC1 aggregates were cell-invasive, i.e., purified aggresomes or recombinant DISC1 fragments where internalized at an efficiency comparable to that of α-synuclein. Intracellular DISC1 aggresomes acquired gain-of-function properties in recruiting otherwise soluble proteins such as the candidate schizophrenia protein dysbindin. Disease-associated DISC1 polymorphism S704C led to a higher oligomerization tendency of DISC1. These findings justify classification of DISC1-dependent brain disorders as protein conformational disorders which we have tentatively termed DISC1opathies. The notion of disturbed proteostasis and protein aggregation as a mechanism of mental diseases is thus emerging. The yet unidentified form of neuronal impairment in CMD is more subtle than in the classical neurodegenerative diseases without leading to massive cell death and as such present a different kind of neuronal dysfunctionality, eventually confined to highly selective CNS subpopulations.  相似文献   

18.
Excess de novo likely gene-disruptive and missense variants within dozens of genes have been identified in autism spectrum disorder(ASD)and other neurodevelopmental disorders.However,many rare inherited missense variants of these high-risk genes have not been thoroughly evaluated.In this study,we analyzed the rare missense variant burden of POGZ in a large cohort of ASD patients from the Autism Clinical and Genetic Resources in China(ACGC)and further dissected the functional effect of diseaseassociated missense variants on neuronal development.Our results showed a significant burden of rare missense variants in ASD patients compared to the control population(P=4.6×10-5,OR=3.96),and missense variants in ASD patients showed more severe predicted functional outcomes than those in controls.Furthermore,by leveraging published large-scale sequencing data of neurodevelopmental disorders(NDDs)and sporadic case reports,we identified 8 de novo missense variants of POGZ in NDD patients.Functional analysis revealed that two inherited,but not de novo,missense variants influenced the cellular localization of POGZ and failed to rescue the defects in neurite and dendritic spine development caused by Pogz knockdown in cultured mouse primary cortical neurons.Significantly,L1CAM,an autism candidate risk gene,is differentially expressed in POGZ deficient cell lines.Reduced expression of L1cam was able to partially rescue the neurite length defects caused by Pogz knockdown.Our study showed the important roles of rare inherited missense variants of POGZ in ASD risk and neuronal development and identified the potential downstream targets of POGZ,which are important for further molecular mechanism studies.  相似文献   

19.
《朊病毒》2013,7(2):134-141
Chronic mental diseases (CMD) like the schizophrenias are progressive diseases of heterogenous but poorly understood biological origin. An imbalance in proteostasis is a hallmark of dysfunctional neurons, leading to impaired clearance and abnormal deposition of protein aggregates. Thus, it can be hypothesized that unbalanced proteostasis in such neurons may also lead to protein aggregates in schizophrenia. These protein aggregates, however, would be more subtle then in the classical neurodegenerative diseases and as such have not yet been detected. The DISC1 (Disrupted-in-schizophrenia 1) gene is considered among the most promising candidate genes for CMD having been identified as linked to CMD in a Scottish pedigree and having since been found to associate to various phenotypes of CMD. We have recently demonstrated increased insoluble DISC1 protein in the cingular cortex in approximately 20% of cases of CMD within the widely used Stanley Medical Research Institute Consortium Collection. Surprisingly, in vitro, DISC1 aggregates were cell-invasive, i.e., purified aggresomes or recombinant DISC1 fragments where internalized at an efficiency comparable to that of α-synuclein. Intracellular DISC1 aggresomes acquired gain-of-function properties in recruiting otherwise soluble proteins such as the candidate schizophrenia protein dysbindin. Disease-associated DISC1 polymorphism S704C led to a higher oligomerization tendency of DISC1. These findings justify classification of DISC1-dependent brain disorders as protein conformational disorders which we have tentatively termed DISC1opathies. The notion of disturbed proteostasis and protein aggregation as a mechanism of mental diseases is thus emerging. The yet unidentified form of neuronal impairment in CMD is more subtle than in the classical neurodegenerative diseases without leading to massive cell death and as such present a different kind of neuronal dysfunctionality, eventually confined to highly selective CNS subpopulations.  相似文献   

20.
The disrupted‐in‐schizophrenia 1 (DISC1) protein has been implicated in a range of biological mechanisms underlying chronic mental disorders such as schizophrenia. Schizophrenia is associated with abnormal striatal dopamine signalling, and all antipsychotic drugs block striatal dopamine 2/3 receptors (D2/3Rs). Importantly, the DISC1 protein directly interacts and forms a protein complex with the dopamine D2 receptor (D2R) that inhibits agonist‐induced D2R internalisation. Moreover, animal studies have found large striatal increases in the proportion of D2R receptors in a high affinity state (D2highR) in DISC1 rodent models. Here, we investigated the relationship between the three most common polymorphisms altering the amino‐acid sequence of the DISC1 protein (Ser704Cys (rs821616), Leu607Phe (rs6675281) and Arg264Gln (rs3738401)) and striatal D2/3R availability in 41 healthy human volunteers, using [11C]‐(+)‐PHNO positron emission tomography. We found no association between DISC1 polymorphisms and D2/3R availability in the striatum and D2R availability in the caudate and putamen. Therefore, despite a direct interaction between DISC1 and the D2R, none of its main functional polymorphisms impact striatal D2/3R binding potential, suggesting DISC1 variants act through other mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号