首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dysferlin is expressed in skeletal and cardiac muscles. However, dysferlin deficiency results in skeletal muscle weakness, but spares the heart. We compared intraindividual mRNA expression profiles of cardiac and skeletal muscle in dysferlin-deficient SJL/J mice and found down-regulation of the complement inhibitor, decay-accelerating factor/CD55, in skeletal muscle only. This finding was confirmed on mRNA and protein levels in two additional dysferlin-deficient mouse strains, A/J mice and Dysf-/- mice, as well as in patients with dysferlin-deficient muscular dystrophy. In vitro, the absence of CD55 led to an increased susceptibility of human myotubes to complement attack. Evidence is provided that decay-accelerating factor/CD55 is regulated via the myostatin-SMAD pathway. In conclusion, a novel mechanism of muscle fiber injury in dysferlin-deficient muscular dystrophy is demonstrated, possibly opening therapeutic avenues in this to date untreatable disorder.  相似文献   

2.
1. Developmental enzyme alterations were investigated in skeletal muscle of the hereditary progressive muscular dystrophy (PMD) mice of C57BL/6J strain. 2. Enzymes examined were classified into three groups according to changes of activities in dystrophy muscle during ageing. Activities of creatine kinase (EC 2.7.3.2), pyruvate kinase (EC 2.7.1.40), glycogen phosphorylase (EC 2.4.1.1), and fructose-biphosphate aldolase (EC 4.1.2.13), each of which had the respective muscle specific isoenzyme of extremely high activity in normal adult skeletal muscle, decreased rapidly in dystrophy muscle from the early stage of the disease with ageing. Activities of glycogen synthase (EC 2.4.1.11) and hexokinase (EC 2.7.1.1) were higher in dystrophy muscle in the early stage but decreased gradually to lower levels than those in the control with ageing. Activities of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) were always much higher in dystrophy muscle than in the control, with no relation to ageing. 3. Isoenzymes of creatine kinase, pyruvate kinase and phosphorylase in dystrophy muscle were mainly the muscle types, indicating that muscle differentiation was not blocked profoundly even in dystrophy muscle. In limited cases, especially in the early stage of the disease, very weak activities of the non-muscle fetal type isoenzymes of creatine kinase and phosphorylase were detected, apparently associated with partial muscle regeneration in dystrophy muscle.  相似文献   

3.
Laminin alpha2 is a component of skeletal and cardiac muscle basal lamina. A defect of the laminin alpha2 chain leads to severe congenital muscular dystrophy (MDC1A) in humans and dy/dy mice. Myogenic cells including myoblasts, myotubes, and myofibers in skeletal muscle are a possible source of the laminin alpha2 chain, and myogenic cells are thus proposed as a cell source for congenital muscular dystrophy therapy. However, we observed production of laminin alpha2 in non-myogenic cells of normal mice, and we could enrich these laminin alpha2-producing cells in CD90(+) cell fractions. Intriguingly, the number of CD90(+) cells increased dramatically during skeletal muscle regeneration in mice. This fraction did not include myogenic cells but exhibited a fibroblast-like phenotype. Moreover, these cells were resident in skeletal muscle, not derived from bone marrow. Finally, the production of laminin alpha2 in CD90(+) cells was not dependent on fusion with myogenic cells. Thus, CD90(+) cells are a newly identified additional cell fraction that increased during skeletal muscle regeneration in vivo and could be another cell source for therapy for lama2-deficient muscular dystrophy.  相似文献   

4.
Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009)  相似文献   

5.
In this report, we have developed a novel method to identify compounds that rescue the dystrophin-glycoprotein complex (DGC) in patients with Duchenne or Becker muscular dystrophy. Briefly, freshly isolated skeletal muscle biopsies (termed skeletal muscle explants) from patients with Duchenne or Becker muscular dystrophy were maintained under defined cell culture conditions for a 24-h period in the absence or presence of a specific candidate compound. Using this approach, we have demonstrated that treatment with a well-characterized proteasome inhibitor, MG-132, is sufficient to rescue the expression of dystrophin, -dystroglycan, and -sarcoglycan in skeletal muscle explants from patients with Duchenne or Becker muscular dystrophy. These data are consistent with our previous findings regarding systemic treatment with MG-132 in a dystrophin-deficient mdx mouse model (Bonuccelli G, Sotgia F, Schubert W, Park D, Frank PG, Woodman SE, Insabato L, Cammer M, Minetti C, and Lisanti MP. Am J Pathol 163: 1663–1675, 2003). Our present results may have important new implications for the possible pharmacological treatment of Duchenne or Becker muscular dystrophy in humans. muscular dystrophy; membrane proteins; MG-132  相似文献   

6.
Limb-girdle muscular dystrophy type 2E (LGMD 2E) is caused by mutations in the beta-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscle. beta-sarcoglycan-deficient (Sgcb-null) mice developed severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. The sarcoglycan-sarcospan and dystroglycan complexes were disrupted in skeletal, cardiac, and smooth muscle membranes. epsilon-sarcoglycan was also reduced in membrane preparations of striated and smooth muscle. Loss of the sarcoglycan-sarcospan complex in vascular smooth muscle resulted in vascular irregularities in heart, diaphragm, and kidneys. Further biochemical characterization suggested the presence of a distinct epsilon-sarcoglycan complex in skeletal muscle that was disrupted in Sgcb-null mice. Thus, perturbation of vascular function together with disruption of the epsilon-sarcoglycan-containing complex represents a novel mechanism in the pathogenesis of LGMD 2E.  相似文献   

7.
Striated muscle-specific disruption of the dystroglycan (DAG1) gene results in loss of the dystrophin-glycoprotein complex in differentiated muscle and a remarkably mild muscular dystrophy with hypertrophy and without tissue fibrosis. We find that satellite cells, expressing dystroglycan, support continued efficient regeneration of skeletal muscle along with transient expression of dystroglycan in regenerating muscle fibers. We demonstrate a similar phenomenon of reexpression of functional dystroglycan in regenerating muscle fibers in a mild form of human muscular dystrophy caused by disruption of posttranslational dystroglycan processing. Thus, maintenance of regenerative capacity by satellite cells expressing dystroglycan is likely responsible for mild disease progression in mice and possibly humans. Therefore, inadequate repair of skeletal muscle by satellite cells represents an important mechanism affecting the pathogenesis of muscular dystrophy.  相似文献   

8.
Dysferlin and the plasma membrane repair in muscular dystrophy   总被引:13,自引:0,他引:13  
Muscular dystrophy covers a group of genetically determined disorders that cause progressive weakness and wasting of the skeletal muscles. Dysferlin was identified as a gene mutated in limb-girdle muscular dystrophy (type 2B) and Miyoshi myopathy. The discovery of dysferlin revealed a new family of proteins, known as the ferlin family, which includes four different genes. Recent work suggests the function of dysferlin in membrane repair and demonstrates that defective membrane repair is a novel mechanism of muscle degeneration. These findings reveal the importance of a basic cellular function in skeletal muscle and a new class of muscular dystrophy where the defect lies in the maintenance, not the structure, of the plasma membrane. Here, we discuss the current knowledge of dysferlin function in the repair of the plasma membrane of the skeletal muscle cells.  相似文献   

9.
Accumulation of RNA CUG repeats in myotonic dystrophy type 1 (DM1) patients leads to the induction of a CUG-binding protein, CUGBP1, which increases translation of several proteins that are required for myogenesis. In this paper, we examine the role of overexpression of CUGBP1 in DM1 muscle pathology using transgenic mice that overexpress CUGBP1 in skeletal muscle. Our data demonstrate that the elevation of CUGBP1 in skeletal muscle causes overexpression of MEF2A and p21 to levels that are significantly higher than those in skeletal muscle of wild type animals. A similar induction of these proteins is observed in skeletal muscle of DM1 patients with increased levels of CUGBP1. Immunohistological analysis showed that the skeletal muscle from mice overexpressing CUGBP1 is characterized by a developmental delay, muscular dystrophy, and myofiber-type switch: increase of slow/oxidative fibers and the reduction of fast fibers. Examination of molecular mechanisms by which CUGBP1 up-regulates MEF2A shows that CUGBP1 increases translation of MEF2A via direct interaction with GCN repeats located within MEF2A mRNA. Our data suggest that CUGBP1-mediated overexpression of MEF2A and p21 inhibits myogenesis and contributes to the development of muscle deficiency in DM1 patients.  相似文献   

10.
Muscular dystrophies comprise an important group of inherited disorders of man. Although the disease has been studied extensively, little is known about the underlying primary pathomechanisms. Consequently, treatment of patients is difficult and prognosis is poor. An animal model of muscular dystrophy is a useful research tool for approaching the basic problems of pathogenesis in muscle diseases. An inherited progressive muscular dystrophy of mink which resembles the amyotonic forms of human muscular dystrophy is currently under study. Clinically, the earliest sign is progressive muscular weakness and atrophy. Muscle enzyme activities in serum are usually elevated to pathologic levels. Urinary creatine/creatinine ratio is elevated. Pathologic changes are limited to skeletal muscle and are typical of those seen in amyotonic forms of human muscular dystrophy. These changes include variation in diameter size of muscle fibers, centralized nuclei, floccular and hyaline degeneration of scattered muscle fibers, increase in connective tissue in endomysial and perimysial areas, and regenerative attempts. Both type I and type II muscle fibers are involved in the disease process. Genetic studies indicate an autosomal recessive mode of inheritance. Although the primary defect in muscular dystrophy is traditionally thought to reside in skeletal muscle, recent studies have produced theories of primary involvement of other tissues and organ systems. These theories are presented and relationships to the traditional theory are discussed.  相似文献   

11.
12.
Calcineurin (Cn) is a Ca(2+)/calmodulin-dependent serine/threonine phosphatase that regulates differentiation-specific gene expression in diverse tissues, including the control of fiber-type switching in skeletal muscle. Recent studies have implicated Cn signaling in diminishing skeletal muscle pathogenesis associated with muscle injury or disease-related muscle degeneration. For example, use of the Cn inhibitor cyclosporine A has been shown to delay muscle regeneration following toxin-induced injury and inhibit regeneration in the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. In contrast, transgenic expression of an activated mutant of Cn in skeletal muscle was shown to increase utrophin expression and reduce overall disease pathology in mdx mice. Here we examine the effect of altered Cn activation in the context of the delta-sarcoglycan-null (scgd(-/-)) mouse model of limb-girdle muscular dystrophy. In contrast to results discussed in mdx mice, genetic deletion of a loxP-targeted calcineurin B1 (CnB1) gene using a skeletal muscle-specific cre allele in the scgd(-/-) background substantially reduced skeletal muscle degeneration and histopathology compared with the scgd(-/-) genotype alone. A similar regression in scgd-dependent disease manifestation was also observed in calcineurin Abeta (CnAbeta) gene-targeted mice in both skeletal muscle and heart. Conversely, increased Cn expression using a muscle-specific transgene increased cardiac fibrosis, decreased cardiac ventricular shortening, and increased muscle fiber loss in the quadriceps. Our results suggest that inhibition of Cn may benefit select types of muscular dystrophy.  相似文献   

13.
Mouse chimeras were made by fusing embryos from the albino BALB/cFo normal skeleton strain producing a slow variant isozyme of glucose phosphate isomerase (GPI) with embryos from the black pigmented SH strain carrying Strong's luxoid gene (symbol: 1st) for skeletal anomalies and producing a fast GPI variant. All chimeras were estimated to bALB/cFo mice to determine the mosaic status of their gonads. In addition, the quantitative proportions of BALB/cFo and SH cells in skin and limb muscles of chimeras were determined by visual estimation of the degree of coat pigmentation and by a serial dilution method applied to electrophoresis and GPI isozyme reaction of limb muscle homogenates. Skeletons of all chimeras and of representative samples of BALB/cFo and SH mice were examined and graded for expression of a number of normal and mutant skeletal characteristics. The most important conclusion of this study is that there was a definite quantitative effect on the development of skeletal characteristics exerted by the relative amount of BALB/ cFo and SH cells present in a chimera such that a structure could vary from normal to entirely mutant, depending on the proportion of each type of cell present.  相似文献   

14.
Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstrates that enhanced reactive oxygen species (ROS) production by CYBB/NOX2 impairs autophagy in muscles from the dmd/mdx mouse, a genetic model of Duchenne muscular dystrophy. Statins decrease CYBB/NOX2 expression and activity and stimulate autophagy in skeletal muscle. Therefore, we treated dmd/mdx mice with simvastatin and showed decreased CYBB/NOX2-mediated oxidative stress and enhanced autophagy induction. This was accompanied by reduced muscle damage, inflammation and fibrosis, and increased muscle force production. Our data suggest that increased autophagy may be a potential mechanism by which simvastatin improves skeletal muscle health and function in muscular dystrophy.  相似文献   

15.
This study determined whether the genotype of bone marrow-derived inflammatory cells contributes to the more pronounced leukocytic exudation and extensive new muscle formation seen in SJL/J compared with BALB/c mice after a crush-injury (Mitchell et al. 1992). Female SJL/J mice were whole-body irradiated and reconstituted with male bone marrow from the BALB/c strain, and irradiated BALB/c females reconstituted with male SJL/J bone marrow. The mice were allowed to recover for 3 weeks and the tibialis anterior muscle (in a leg which had been protected from irradiation) was injured by crushing. At 3 and 10 days after injury the extent of necrotic debris, mononuclear leukocytic infiltration and new muscle formation was assessed in the muscles. The SJL/J mice reconstituted with BALB/c bone marrow showed extensive mononuclear leukocytic infiltration and clearance of necrotic debris when compared with BALB/c mice reconstituted with SJL/J bone marrow, and these strain-specific differences mirrored those seen with control bone marrow reconstituted hosts and non-irradiated hosts. The results show that the genotype of the bone marrow-derived macrophages is not responsible for the superior regeneration of crush-injured skeletal muscle in SJL/J mice, and it appears that factors intrinsic to the muscle tissue may be of central importance.  相似文献   

16.
Duchenne's muscular dystrophy (DMD), which affects 1/3500 live male births, involves a progressive degeneration of skeletal and cardiac muscle, leading to early death. The protein dystrophin is lacking in DMD and present, but defective, in the allelic, less severe, Becker muscular dystrophy and is also missing in the mdx mouse. Experiments on the mdx mouse have suggested two possible therapies for these myopathies. Implantation of normal muscle precursor cells (mpc) into mdx skeletal muscle leads to the conversion of dystrophin-negative fibres to -positive, with consequent improvement in muscle histology. Direct injection of dystrophin cDNA into skeletal or cardiac muscle also gives rise to dystrophin-positive fibres. Although both appear promising, there are a number of questions to be answered and refinements to be made before either technique could be considered possible as treatments for myopathies in man.  相似文献   

17.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors.However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.  相似文献   

18.
Dystroglycan is a major cell surface glycoprotein receptor for the extracellular matrix in skeletal muscle. Defects in dystroglycan glycosylation cause muscular dystrophy and alterations in dystroglycan glycosylation can impact extracellular matrix binding. Here we describe an immunoprecipitation technique that allows isolation of beta dystroglycan with members of the dystrophin-associated protein complex (DAPC) from detergent-solubilized skeletal muscle. Immunoprecipitation, coupled with shotgun proteomics, has allowed us to identify new dystroglycan-associated proteins and define changed associations that occur within the DAPC in dystrophic skeletal muscles. In addition, we describe changes that result from overexpression of Galgt2, a normally synaptic muscle glycosyltransferase that can modify alpha dystroglycan and inhibit the development of muscular dystrophy when it is overexpressed. These studies identify new dystroglycan-associated proteins that may participate in dystroglycan's roles, both positive and negative, in muscular dystrophy.  相似文献   

19.
Defensins comprise a family of cationic antimicrobial peptides characterized by conserved cysteine residues. They are produced in various organs including skeletal muscle and are identified as key elements in the host defense system as potent effectors. At the same time, defensins have potential roles in the regulation of inflammation and, furthermore, can exert cytotoxic effects on several mammalian cells. Here, we developed transgenic mice overexpressing mouse -defensin-6 to explore the pathophysiological roles of the defensin family as a novel mediator of inflammatory tissue injury. Unexpectedly, the transgenic mice showed short lifespan, poor growth, and progressive myofiber degeneration with functional muscle impairment, predominant centronucleated myofibers, and elevated serum creatine kinase activity, as seen in human muscular dystrophy. Furthermore, some of the transgenic myofibers showed IB accumulation, which would be related to the myofiber apoptosis of limb-girdle muscular dystrophy type 2A. The present findings may unravel a concealed linkage between the innate immune system and the pathophysiology of degenerative diseases. muscular dystrophy; innate immunity; NF-B  相似文献   

20.
In Duchenne muscular dystrophy (DMD), dystrophin mutation leads to progressive lethal skeletal muscle degeneration. For unknown reasons, dystrophin deficiency does not recapitulate DMD in mice (mdx), which have mild skeletal muscle defects and potent regenerative capacity. We postulated that human DMD progression is a consequence of loss of functional muscle stem cells (MuSC), and the mild mouse mdx phenotype results from greater MuSC reserve fueled by longer telomeres. We report that mdx mice lacking the RNA component of telomerase (mdx/mTR) have shortened telomeres in muscle cells and severe muscular dystrophy that progressively worsens with age. Muscle wasting severity parallels a decline in MuSC regenerative capacity and is ameliorated histologically by transplantation of wild-type MuSC. These data show that DMD progression results, in part, from a cell-autonomous failure of?MuSC to maintain the damage-repair cycle initiated by dystrophin deficiency. The essential role of MuSC function has therapeutic implications for DMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号