首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

"Candidatus Phytoplasma aurantifolia", is the causative agent of witches' broom disease in Mexican lime trees (Citrus aurantifolia L.), and is responsible for major losses of Mexican lime trees in Southern Iran and Oman. The pathogen is strictly biotrophic, and thus is completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. Therefore, we have applied a cDNA- amplified fragment length polymorphism (AFLP) approach to analyze gene expression in Mexican lime trees infected by " Ca. Phytoplasma aurantifolia".  相似文献   

2.
A differential display of mRNAs was used to isolate periwinkle cDNAs differentially expressed following infection with one of three mollicutes: Spiroplasma citri, Candidatus Phytoplasma aurantifolia, and stolbur phytoplasma. Twenty-four differentially expressed cDNAs were characterized by Northern blots and sequence analysis. Eight of them had homologies with genes in databanks coding for proteins involved in photosynthesis, sugar transport, response to stress, or pathways of phytosterol synthesis. The regulation of these genes in periwinkle plants infected by additional phloem-restricted bacteria showed that they were not specific to a given mollicute, but correlations with particular symptoms could be established. Expression of transketolase was down regulated following infection with a pathogenic strain of S. citri. No down regulation was observed for the nonphytopathogenic mutant GMT553, which is deficient for fructose utilization.  相似文献   

3.
4.
The anti-phytoplasma activities of surfactin (derived from Iranian native Bacillus subtilis isolates) and tetracycline towards Candidatus "Phytoplasma aurantifolia", the agent of lime Witches' broom disease, were investigated. HPLC was used to quantify the surfactin production in four previously characterized native surfactin-producing strains, and the one producing the highest amount of surfactin (about 1,500 mg/l) was selected and cultivated following optimized production and extraction protocols. Different combinations of purified surfactin and commercial tetracycline were injected into artificially phytoplasmainfected Mexican lime seedlings using a syringe injection system. An absolute quantitative real-time PCR system was developed to monitor the phytoplasma population shifts in the lime phloem during 3 months following the injections. The results revealed that the injections of surfactin or tetracycline had a significant inhibitory effect on Candidatus "P. aurantifolia". However, the combined treatment with both surfactin and tetracycline (1:1) resulted in the highest inhibition due to a synergic effect, which suppressed the phytoplasma population from about 2×10(5) to less than 10 phytoplasma units/g plant tissue.  相似文献   

5.
During a survey in a limited area of the Shanxi province in China, phytoplasma symptoms were observed on woody plants such as Chinese scholar tree, apple, grapevine and apricot. The polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses on the phytoplasma 16S ribosomal gene confirmed that symptomatic samples from all these species were infected by phytoplasmas. The molecular characterization of the pathogen, performed also with sequencing of polymerase chain reaction amplified 16S rDNA, showed that the phytoplasmas detected in all plant species tested are closely related with stolbur, but two samples from a Chinese scholar tree were infected with phytoplasmas related to ‘Candidatus Phytoplasma japonicum’. The presence of RFLP polymorphism was found in the 16S rDNA amplicons with three of the six enzymes employed in the majority of phytoplasma strains studied.  相似文献   

6.

Background

Sudden death syndrome (SDS) caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development.

Results

Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873.

Conclusion

This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS development in soybean and possible defense mechanisms that may be involved in conferring immunity against F. virguliforme and other soybean pathogens.  相似文献   

7.
Phytoplasma, the pathogen of yellow leaf disease (YLD) of arecanut (Areca catechu L.) was detected by transmission and scanning electron microscopy. Tissues of YLD affected palms contained phytoplasmas in the phloem sieve elements, but not in symptomless healthy palm tissues. Phytoplasma was purified from tissues of diseased palms employing percoll density gradient centrifugation and confirmed by transmission electron microscopy. Using the purified phytoplasma preparation, a polyclonal antiserum was raised in rabbits and used for standardisation of agar gel double diffusion (Ouchterlony) test and DAC-ELISA. Clear precipitin line was observed in Ouchterlony test between the antigen from diseased palms and the pathogen-specific antibodies after 48 h incubation and only undiluted antiserum showed best result in the test. However, in ELISA, 1:10 antigen dilution and 1:400 pathogen-specific antibodies dilution produced sensitive detection of the pathogen with a difference of >3.5 times absorption values between healthy and diseased samples. The results thus confirmed the ability of antiserum to distinguish healthy and infected plants and utility of ELISA for effective diagnosis of YLD.  相似文献   

8.
The symptoms of possible phytoplasma infection in introduced and local varieties of papaya were first noted in the Mexican state of Baja California Sur (BCS) during field surveys in 2002–2003. Phytoplasma structures were observed using scanning electron microscopy (SEM) in phloem sieve elements in diseased papaya plants, but not in healthy plants. They were rounded structures 400–1600 nm in diameter. This is the first report of the possible association of phytoplasmas with diseased papaya plants in BCS. The use of SEM for the primary detection of disease aetiology is discussed.  相似文献   

9.
During several surveys in extensive areas in central Iran, apple trees showing phytoplasma diseases symptoms were observed. PCR tests using phytoplasma universal primer pairs P1A/P7A followed by R16F2n/R16R2 confirmed the association of phytoplasmas with symptomatic apple trees. Nested PCR using 16SrX group‐specific primer pair R16(X)F1/R1 and aster yellows group‐specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy indicated that apple phytoplasmas in these regions did not belong to the apple proliferation group, whereas aster yellows group‐related phytoplasmas caused disease on some trees. Restriction fragment length polymorphism (RFLP) analyses using four restriction enzymes (HhaI, HpaII, HaeIII and RsaI) and sequence analyses of partial 16S rRNA and rp genes demonstrated that apple phytoplasma isolates in the centre of Iran are related to ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma aurantifolia’. This is the first report of apples infected with ‘Ca. Phytoplasma asteris’ in Iran and the first record from association of ‘Ca. Phytoplasma aurantifolia’ with apples worldwide.  相似文献   

10.

Key message

Specific VOC emissions from infected plants allow their recognition and elicit defence responses in neighboring plants, which are, however, insufficient to induce resistance.

Abstract

A wide range of volatile organic compounds (VOCs) is released during plant–pathogen interactions both by the pathogens and the hosts. Some of these VOCs are specific for the different diseases and are known to play a role in the pathogenicity or in plant defence responses. Besides, disease-specific VOCs may serve as markers for diagnostic protocols, which allow a non-destructive and rapid screening of bulk samples of plant material. This work aimed to verify the feasibility of a VOC-based diagnosis and to investigate the possible biological role of VOCs released during the plant–pathogen interactions. The volatile emissions from Pseudomonas syringae pv. actinidiae in axenic cultures and from inoculated in vitro kiwifruit plants were characterized by gas chromatography–mass spectrometry (GC–MS) and proton transfer reaction–time-of-flight-mass spectrometry (PTR–ToF-MS). By GC–MS, several putative biochemical markers, such as 1-undecene, were identified. PTR–ToF-MS resulted highly effective in screening the plant material for latent infections. To develop a more user-friendly, portable and less expensive diagnosis system, two different electronic nose models were tested for the early diagnosis of P. syringae pv. actinidiae in asymptomatic plant material. Our experiments demonstrated the feasibility of the electronic nose-based screening of infected plant material. Concerning the biological role of the VOCs released during the plant–pathogen interactions, the exposure of healthy plants to VOCs from infected ones influences the plant growth and induces the stimulation of protective responses. However, after the infection, P. syringae pv. actinidiae is able to selectively inactivate the induced plant defences.
  相似文献   

11.
During 2015–2016, wooden and herbaceous plants growing in parks, boulevards, fields, gardens and forests in Khuzestan province, southwestern Iran, were visually inspected for symptoms resembling phytoplasma. Fifty‐one symptomatic samples from nine different species and one symptomless sample from each plant were collected. Leaf midribs, petioles and the parts of stem cambium were separated and freeze‐dried. Total DNA was extracted using CTAB‐based method and tested for phytoplasma using a nested PCR assay. The expected size amplicons of 16S rDNA were sequenced and compared to those of reference phytoplasmas by BLASTn search and phylogenetic analysis. The consensus 16S rDNA sequence of the detected phytoplasma in narrow cattail related to reference phytoplasma group 16SrVI, “Candidatus Phytoplasma trifolii” while in the other plants were related to reference phytoplasma subgroup 16SrII–D, “Candidatus Phytoplasma aurantifolia.” All isolates showed 98%–99% sequence identity to members of their reference groups. To our knowledge, this is the first report of “Candidatus Phytoplasma aurantifolia”‐related strains infecting the plants of Acacia salicina, Alternanthera ficoidea, Melaleuca citrine, Citrus aurantium throughout the world and Celosia christata in Iran. Furthermore, this study is the first to report the association of a “Candidatus Phytoplasma trifolii”‐related strain with Typha angustifolia worldwide.  相似文献   

12.
Transmission tests were conducted with field‐collected Bunchy Top Symptoms (BTS) phytoplasma‐infected specimens of Empoasca papayae. BTS developed in all eight inoculated papayas 3 months later. The BTS phytoplasma was identified in six of eight inoculated papayas, whose partial 16S rRNA sequence (GenBank Accession no. FJ6492000 ) was 99.9% identical with those from the collected papayas (GenBank Accession no FJ649198 ) and E. papayae (GenBank Accession no. FJ649199 ), all of which are members of group 16SrII, ‘Candidatus Phytoplasma aurantifolia’. Results confirmed the ability of E. papayae to transmit the BTS phytoplasma.  相似文献   

13.
Candidatus Phytoplasma mali’, the causal agent of apple proliferation (AP) disease, is a quarantine pathogen controlled by chemical treatments against insect vectors and eradication of diseased plants. In accordance with the European Community guidelines, novel strategies should be developed for sustainable management of plant diseases by using resistance inducers (e.g. endophytes). A basic point for the success of this approach is the study of endophytic bacteria associated with plants. In the present work, endophytic bacteria living in healthy and ‘Ca. Phytoplasma mali’-infected apple trees were described by cultivation-dependent and independent methods. 16S rDNA sequence analysis showed the presence of the groups Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, and Firmicutes. In detail, library analyses underscored 24 and 17 operational taxonomic units (OTUs) in healthy and infected roots, respectively, with a dominance of Betaproteobacteria. Moreover, differences in OTUs number and in CFU/g suggested that phytoplasmas could modify the composition of endophytic bacterial communities associated with infected plants. Intriguingly, the combination of culturing methods and cloning analysis allowed the identification of endophytic bacteria (e.g. Bacillus, Pseudomonas, and Burkholderia) that have been reported as biocontrol agents. Future research will investigate the capability of these bacteria to control ‘Ca. Phytoplasma mali’ in order to develop sustainable approaches for managing AP.  相似文献   

14.
Two phytoplasmas closely related to the X‐disease group were associated with China‐tree (Melia azedarach L.) and garlic (Allium sativum L.) decline diseases in Argentina. The present work was aimed at studying their phylogenetic relationship based on molecular characterization of the 16S ribosomal DNA sequences. Phytoplasma DNAs were obtained from naturally infected China‐tree and garlic plants from different geographical isolates. The results from analysis of restriction fragment length polymorphisms and nucleotide sequences of the 16S rDNA showed the affiliation of China‐tree and garlic decline phytoplasmas to the 16SrIII (X‐disease group), subgroups B and J, respectively. Both organisms had high sequence similarities in the 16SrDNA nucleotide sequence with the Chayote witches’ broom phytoplasma from Brazil. The phylogenetic tree, constructed by parsimony analysis, grouped the Garlic decline, China‐tree decline, Chayote witches’ broom and Clover yellow edge phytoplasmas into a cluster separated from the other phytoplasmas of the X‐disease group.  相似文献   

15.
The chromosome sequence of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A), associated with dieback in papaya, Australian grapevine yellows in grapevine, and several other important plant diseases, was determined. The circular chromosome is represented by 879,324 nucleotides, a GC content of 27%, and 839 protein-coding genes. Five hundred two of these protein-coding genes were functionally assigned, while 337 genes were hypothetical proteins with unknown function. Potential mobile units (PMUs) containing clusters of DNA repeats comprised 12.1% of the genome. These PMUs encoded genes involved in DNA replication, repair, and recombination; nucleotide transport and metabolism; translation; and ribosomal structure. Elements with similarities to phage integrases found in these mobile units were difficult to classify, as they were similar to both insertion sequences and bacteriophages. Comparative analysis of "Ca. Phytoplasma australiense" with "Ca. Phytoplasma asteris" strains OY-M and AY-WB showed that the gene order was more conserved between the closely related "Ca. Phytoplasma asteris" strains than to "Ca. Phytoplasma australiense." Differences observed between "Ca. Phytoplasma australiense" and "Ca. Phytoplasma asteris" strains included the chromosome size (18,693 bp larger than OY-M), a larger number of genes with assigned function, and hypothetical proteins with unknown function.  相似文献   

16.
Phytoplasma infected acid lime plants in India develop characteristic symptoms like small chlorotic leaves, multiple sprouting and shortened internodes. Leaves drop prematurely and infected branches have distorted twigs resembling witches’ broom appearance which eventually show die-back symptoms. During its first report in 1999, witches’ broom disease identification was made on the basis of symptomatology and electron microscopy. However, molecular techniques have proved to be more accurate and reliable for phytoplasma detection than the conventional methods. During survey in the year 2010 six samples were collected from infected acid lime plants showing typical field symptoms from Vidarbha region of Maharastra. Initially, phytoplasma bodies were observed in phloem tissues of all six symptomatic samples under JEM 100S transmission electron microscope and all these six samples were subsequently screened using different set of phytoplasma specific universal primers by nested PCR, a widely recommended molecular technique for phytoplasma detection. In the present study P1/P7 “universal” phytoplasma-primer set was used for first round of PCR and amplified products were processed separately for nested PCR with three different nested primer pairs viz. R16F2n/R16R2, R16mF2/R16mR1 and fU5/rU3. The presence of phytoplasma was confirmed in all six suspected samples and one representative ~1.2 kb size amplicon was sequenced and deposited in GenBank as Candidatus Phytoplasma species AL-M (JQ808143). This is the first report of PCR based molecular detection of phytoplasma-induced witches’ broom disease of acid lime (WBDL) in India. Further molecular evaluation to determine the identity to the species level is in progress.  相似文献   

17.
The objective of the present work was to study biochemical alterations in lime plants infected by the Candidatus Phytoplasma aurantifoliae. Changes in antioxidant activities, content of chlorophylls (Chl), carotenoids (Car), soluble proteins, sugars and auxin (IAA) in infected plant were investigated. The activities of polyphenol oxidase (PPO), peroxidase (POX) and superoxide dismutase (SOD) were observed to be greater in infected leaves than the healthy control. Also according to non-denaturing PAGE, in infected leaves all the antioxidative enzymes isoforms were stronger than that of the healthy control. These results suggest that antioxidant enzymes can be activated in response to infection by phytoplasma. The decrease in content of proteins, total soluble and reducing sugars in infected plants point out changes in host metabolism due to the phytoplasma infection. The reduction in chlorophylls and auxin content shows that the phytoplasma can interfere in photosynthesis and induces senescence in the leaf. In conclusion, this study provides new insights into the lime response to phytoplasma infection.  相似文献   

18.
19.
Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi. To date, little is known about the molecular mechanism of poplar (M. brunnea) interaction. In order to identify the proteins related to disease resistance and understand its molecular basis, the clone "NL895" (P. euramericana CL"NL895"), which is highly resistant to M. brunnea f. sp. multigermtubi, was used in this study. We used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to identify the proteins in poplar leaves that were differentially expressed in response to black spot disease pathogen, M. brunnea f. sp. multigermtubi. Proteins extracted from poplar leaves at 0, 12, 24, 48, and 72 h after pathogen-inoculation were separated by 2-DE, About 500 reproducible protein spots were detected, of which 40 protein spots displayed differential expression in levels and were subjected to Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) followed by database searching. According to the function, the identified proteins were sorted into five categories, that is, protein synthesis, metabolism, defense response and unclassified proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号