首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Animal domestication involved drastic phenotypic changes driven by strong artificial selection and also resulted in new populations of breeds, established by humans. This study aims to identify genes that show evidence of recent artificial selection during pig domestication.

Results

Whole-genome resequencing of 30 individual pigs from domesticated breeds, Landrace and Yorkshire, and 10 Asian wild boars at ~16-fold coverage was performed resulting in over 4.3 million SNPs for 19,990 genes. We constructed a comprehensive genome map of directional selection by detecting selective sweeps using an FST-based approach that detects directional selection in lineages leading to the domesticated breeds and using a haplotype-based test that detects ongoing selective sweeps within the breeds. We show that candidate genes under selection are significantly enriched for loci implicated in quantitative traits important to pig reproduction and production. The candidate gene with the strongest signals of directional selection belongs to group III of the metabolomics glutamate receptors, known to affect brain functions associated with eating behavior, suggesting that loci under strong selection include loci involved in behaviorial traits in domesticated pigs including tameness.

Conclusions

We show that a significant proportion of selection signatures coincide with loci that were previously inferred to affect phenotypic variation in pigs. We further identify functional enrichment related to behavior, such as signal transduction and neuronal activities, for those targets of selection during domestication in pigs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1330-x) contains supplementary material, which is available to authorized users.  相似文献   

2.
Sweet cherry (Prunus avium L.) trees are both economically important fruit crops but also important components of natural forest ecosystems in Europe, Asia and Africa. Wild and domesticated trees currently coexist in the same geographic areas with important questions arising on their historical relationships. Little is known about the effects of the domestication process on the evolution of the sweet cherry genome. We assembled and annotated the genome of the cultivated variety “Big Star*” and assessed the genetic diversity among 97 sweet cherry accessions representing three different stages in the domestication and breeding process (wild trees, landraces and modern varieties). The genetic diversity analysis revealed significant genome‐wide losses of variation among the three stages and supports a clear distinction between wild and domesticated trees, with only limited gene flow being detected between wild trees and domesticated landraces. We identified 11 domestication sweeps and five breeding sweeps covering, respectively, 11.0 and 2.4 Mb of the P. avium genome. A considerable fraction of the domestication sweeps overlaps with those detected in the related species, Prunus persica (peach), indicating that artificial selection during domestication may have acted independently on the same regions and genes in the two species. We detected 104 candidate genes in sweep regions involved in different processes, such as the determination of fruit texture, the regulation of flowering and fruit ripening and the resistance to pathogens. The signatures of selection identified will enable future evolutionary studies and provide a valuable resource for genetic improvement and conservation programs in sweet cherry.  相似文献   

3.
BACKGROUND: Artificial selection results in phenotypic evolution. Maize (Zea mays L. ssp. mays) was domesticated from its wild progenitor teosinte (Zea mays subspecies parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties. The landraces provided the genetic material for modern plant breeders to select improved varieties and inbred lines by enhancing traits controlling agricultural productivity and performance. Artificial selection during domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. SCOPE: This review is a summary of research on the identification and characterization by population genetics approaches of genes affected by artificial selection in maize. CONCLUSIONS: Analysis of DNA sequence diversity at a large number of genes in a sample of teosintes and maize inbred lines indicated that approx. 2 % of maize genes exhibit evidence of artificial selection. The remaining genes give evidence of a population bottleneck associated with domestication and crop improvement. In a second study to efficiently identify selected genes, the genes with zero sequence diversity in maize inbreds were chosen as potential targets of selection and sequenced in diverse maize landraces and teosintes, resulting in about half of candidate genes exhibiting evidence for artificial selection. Extended gene sequencing demonstrated a low false-positive rate in the approach. The selected genes have functions consistent with agronomic selection for plant growth, nutritional quality and maturity. Large-scale screening for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown. These approaches should also be applicable to other domesticated species if specific demographic conditions during domestication exist.  相似文献   

4.
Maize (Zea mays subsp mays) was domesticated from teosinte (Z. mays subsp parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties, which were spread throughout the Americas by Native Americans and adapted to a wide range of environmental conditions. Starting with landraces, 20th century plant breeders selected inbred lines of maize for use in hybrid maize production. Both domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. Here, we sequenced 1095 maize genes from a sample of 14 inbred lines and chose 35 genes with zero sequence diversity as potential targets of selection. These 35 genes were then sequenced in a sample of diverse maize landraces and teosintes and tested for selection. Using two statistical tests, we identified eight candidate genes. Extended gene sequencing of these eight candidate loci confirmed that six were selected throughout the gene, and the remaining two exhibited evidence of selection in the 3' portion of each gene. The selected genes have functions consistent with agronomic selection for nutritional quality, maturity, and productivity. Our large-scale screen for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown.  相似文献   

5.
家养动物在人类生活中占有重要地位,它们都经历驯化而来,在自然和人工选择下,适应了当地环境和人类需要,形成了各类品种。驯化、自然和人工选择都会在基因组上留下选择信号。对这些选择信号研究,可以直接挖掘到功能基因,是目前最重要的功能基因筛选策略之一。当前已经对猪、鸡、牛、羊、狗等家养动物开展了选择信号研究,并挖掘了大量功能基因。本文主要概述了选择信号的种类和检测方法,简述其在家养动物中的研究,并讨论了选择信号分析的关键问题及其研究前景。  相似文献   

6.
The process of domestication leads to acquisition of traits that are often similar between plant species that belong to the same family but have different breeding systems. Hence domestication is a useful model for studying evolutionary responses to selection in plants with contrasting breeding systems. We consider a stochastic model simulating gene flow between a natural population and an initial population containing mutants with domesticated phenotypes at low frequency. We assume that a large number of loci contribute equally to the cultivated phenotype. Our results indicate that the number of loci for which the mutant (‘domestication’) allele is maintained is larger in autogamous plants than in allogamous ones and that domestication can lead to the selection of tightly linked combinations of genes in allogamous plants. This work provides a general model for the selection of gene clusters through a sieve effect and it is discussed in comparison with models proposed to explain the evolution of linkage of genes determining wing patterns in butterflies exhibiting Batesian mimicry.  相似文献   

7.
Genetic loci influencing traits important to humans have been selected during crop domestication. The starch properties of rice influence the ease of cooking and attractiveness of rice as a human food. Starch biosynthesis genes likely to influence starch properties in the grain were compared in wild and domesticated rice genotypes. Sequence variation was investigated in starch biosynthesis gene exons that have been reported to have a direct influence on rice amylose content, gelatinization temperature, and amylopectin chain length. Exons 6 and 10 of GBSSI, exon 8 of SSIIa and exons 11, 13, 14 and 16 of SBEIIb were amplified and sequenced from 13 wild Oryza species encompassing genome types AA to HHJJ. Thirty two single nucleotide polymorphisms (SNPs) were identified in the exons of GBSSI; 176 in exon 8 of SSIIa, and 43 in SBEIIb, giving a total of 251 SNPs among the species. Eighty six of these SNP caused changes in the encoded amino acid, of which 28 were missense mutations that affected highly conserved amino acids within the protein sequence of GBSSI, SSIIa or SBEIIb. Two indels were identified in Potamophila parviflora, a close relative of Zizania palustris, a North American native wild rice. Most of the nucleotide variations and non-conservative changes were observed in the genomes other than the AA genome species. This represents a genetic resource for use in rice starch manipulation. The impact of human selection at these loci can be deduced by comparison of modern cultivated genotypes with their wild progenitors.  相似文献   

8.
The domestication of diverse grain crops from wild grasses was a result of artificial selection for a suite of overlapping traits producing changes referred to in aggregate as ‘domestication syndrome’. Parallel phenotypic change can be accomplished by either selection on orthologous genes or selection on non‐orthologous genes with parallel phenotypic effects. To determine how often artificial selection for domestication traits in the grasses targeted orthologous genes, we employed resequencing data from wild and domesticated accessions of Zea (maize) and Sorghum (sorghum). Many ‘classic’ domestication genes identified through quantitative trait locus mapping in populations resulting from wild/domesticated crosses indeed show signatures of parallel selection in both maize and sorghum. However, the overall number of genes showing signatures of parallel selection in both species is not significantly different from that expected by chance. This suggests that while a small number of genes will extremely large phenotypic effects have been targeted repeatedly by artificial selection during domestication, the optimization part of domestication targeted small and largely non‐overlapping subsets of all possible genes which could produce equivalent phenotypic alterations.  相似文献   

9.
Identifying recent positive selection signatures in domesticated animals could provide information on genome response to strong directional selection from domestication and artificial selection and therefore could help in identifying mutations responsible for improved traits. We used genotyping data generated using Illumina's BovineSNP50 Genotyping BeadChips to identify selection signatures in the Blonde d'Aquitaine breed, a well‐muscled French beef breed. For this purpose, we employed a hidden Markov model‐based test, which detects selection by studying local variations in the allele frequency spectrum along the genome, within a single population. Three regions containing selective sweeps were identified. Annotation of genes located within these regions revealed interesting candidate genes. For example, myostatin (also known as GDF8), a known muscle growth factor inhibitor, is located within the selection signature region found on chromosome 2. In addition, we have identified chromosomal regions that show some evidence of selection within QTL regions for economically important traits. The results of this study could help to better understand the mechanisms related to the selection of the Blonde d'Aquitaine breed.  相似文献   

10.
Determining the identity and distribution of molecular changes leading to the evolution of modern crop species provides major insights into the timing and nature of historical forces involved in rapid phenotypic evolution. In this study, we employed an integrated candidate gene strategy to identify loci involved in the evolution of flowering time during early domestication and modern improvement of the sunflower (Helianthus annuus). Sunflower homologs of many genes with known functions in flowering time were isolated and cataloged. Then, colocalization with previously mapped quantitative trait loci (QTLs), expression, or protein sequence differences between wild and domesticated sunflower, and molecular evolutionary signatures of selective sweeps were applied as step-wise criteria for narrowing down an original pool of 30 candidates. This process led to the discovery that five paralogs in the flowering locus T/terminal flower 1 gene family experienced selective sweeps during the evolution of cultivated sunflower and may be the causal loci underlying flowering time QTLs. Our findings suggest that gene duplication fosters evolutionary innovation and that natural variation in both coding and regulatory sequences of these paralogs responded to a complex history of artificial selection on flowering time during the evolution of cultivated sunflower.  相似文献   

11.
12.
Transposable elements, as the most active genetic factors, have driven genome evolution in maize and reshaped certain key loci responsible for maize domestication, exemplified by an inserted transposon in teosinte branched1 (tb1), which controls plant architecture. In this study, we detected an insertion of a transposable element in the second exon of the coding sequence of the maize starch synthase gene SSIIb, leading to a splicing modification and gene frameshift. This insertion provided a means of determining the function of SSIIb for starch synthesis during maize domestication. Association and quantitative trait locus (QTL) mappings showed that SSIIb was not associated with starch eating quality and total starch content of kernel, and two maize near-isogenic-line-like lines with and without the insertion of the transposable element further exhibited the same starch content of kernel and leaf; in addition, nucleotide diversity analysis revealed that maize SSIIb was not under selection during domestication. All these results demonstrated that maize SSIIb might serve as a very minor genetic factor or a functional redundancy gene in starch synthesis. Global BLAST showed that the maize genome harbored 1,387 copies of this transposable element, of which 135 copies were located in genic regions. At least three genes beside maize SSIIb were disturbed by this transposable element. Five patterns of transposition, according to the insertion sites close to or within genes such as maize SSIIb in this study, are under discussion and a large quantity of present/absent variations due to the insertion of varieties of transposable elements, discovered by revolutionary next-generation sequencing, would rapidly accelerate QTL and association mappings for maize domestication through candidate gene tactics in the near future.  相似文献   

13.
The photoreceptor phytochromes, encoded by a small gene family, are responsible for controlling the expression of a number of light-responsive genes and photomorphogenic events, including agronomically important phenotypes such as flowering time and shade-avoidance behavior. The understanding and control of flowering time are particularly important goals in sorghum cultivar development for diverse environments, and naturally occurring variation in the phytochrome genes might prove useful in breeding programs. Also of interest is whether variation observed at the phytochrome loci in domesticated sorghum, or in particular races, is a result of human selection. Population genetic studies can reveal evidence of such selection in patterns of polymorphism and divergence. In this study we report a population genetic analysis of the PHY gene family in Sorghum bicolor (L.) Moench in a diverse panel including both cultivated and wild accessions. We show that the level of nucleotide variation in all gene family members is about half the average for this species, consistent with purifying selection acting on these loci. However, the rate of amino acid substitution is accelerated at PHYC compared to the other two loci. In comparisons to a closely related sorghum species, PHYC shows a pattern of intermediate frequency amino acid changes that differ from the patterns observed in comparisons across longer evolutionary distances. There is also a departure from expected patterns of polymorphism and divergence at synonymous sites in PHYC, although the data do not fit a simple model of directional or diversifying selection. Cultivated sorghum has a level of variation similar to that of wild relatives (ssp. verticilliflorum), but many polymorphisms are subspecies-specific, including several amino acid variants.  相似文献   

14.
BACKGROUND AND AIMS: The main aim of this study was to use an amplified fragment length polymorphism (AFLP)-based, large-scale screening of the whole genome of Phaseolus vulgaris to determine the effects of selection on the structure of the genetic diversity in wild and domesticated populations. METHODS: Using pooled DNA samples, seven each of wild and domesticated populations of P. vulgaris were studied using 2506 AFLP markers (on average, one every 250 kb). About 10 % of the markers were also analysed on individual genotypes and were used to infer allelic frequencies empirically from bulk data. In both data sets, tests were made to determine the departure from neutral expectation for each marker using an F(ST)-based method. KEY RESULTS: The most important outcome is that a large fraction of the genome of the common bean (16 %; P < 0.01) appears to have been subjected to effects of selection during domestication. Markers obtained in individual genotypes were also mapped and classified according to their proximities to known genes and quantitative trait loci (QTLs) of the domestication syndrome. Most of the markers that were found to be potentially under the effects of selection were located in the proximity of previously mapped genes and QTLs related to the domestication syndrome. CONCLUSIONS: Overall, the results indicate that in P. vulgaris a large portion of the genome appears to have been subjected to the effects of selection, probably because of linkage to the loci selected during domestication. As most of the markers that are under the effects of selection are linked to known loci related to the domestication syndrome, it is concluded that population genomics approaches are very efficient in detecting QTLs. A method based on bulk DNA samples is presented that is effective in pre-screening for a large number of markers to determine selection signatures.  相似文献   

15.
Pathogens have played a substantial role in human evolution, with past infections shaping genetic variation at loci influencing immune function. We selected 168 genes known to be involved in the immune response, genotyped common single nucleotide polymorphisms across each gene in three population samples (CEPH Europeans from Utah, Han Chinese from Guangxi, and Yoruba Nigerians from Southwest Nigeria) and searched for evidence of selection based on four tests for non-neutral evolution: minor allele frequency (MAF), derived allele frequency (DAF), Fst versus heterozygosity and extended haplotype homozygosity (EHH). Six of the 168 genes show some evidence for non-neutral evolution in this initial screen, with two showing similar signals in independent data from the International HapMap Project. These analyses identify two loci involved in immune function that are candidates for having been subject to evolutionary selection, and highlight a number of analytical challenges in searching for selection in genome-wide polymorphism data. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Emily C. Walsh, Pardis Sabeti, Holli B. Hutcheson, and Ben Fry have contributed equally to this work and Stephen O’Brien and David Altshuler have jointly supervised this project  相似文献   

16.
We investigated DNA sequence variation in 72 candidate genes in maize landraces and the wild ancestor of maize, teosinte. The candidate genes were chosen because they exhibit very low sequence diversity among maize inbreds and have sequence homology to known regulatory genes. We observed signatures of selection in 17 candidate genes, indicating that they were potential targets of artificial selection during domestication. In addition, 21 candidate genes were identified as potential targets of natural selection in teosinte. A comparison of the proportion of selected genes between our regulatory genes and genes unfiltered for their potential function (but also with very low sequence diversity among maize inbreds) provided some weak evidence that regulatory genes are overrepresented among selected genes. We detected no significant association between the positions of genes identified as potential targets of selection during domestication and quantitative trait loci (QTL) responsible for maize domestication traits. However, a subset of these genes, those identified by sequence homology as kinase/phosphatase genes, significantly cluster with the domestication QTL. We also analyzed expression profiles of genes in distinct maize tissues and observed that domestication genes are expressed on average at a significantly higher level than neutral genes in reproductive organs, including kernels.  相似文献   

17.
18.
Repeated phenotypic evolution can occur at both the inter- and intraspecific level and is especially prominent in domesticated plants, where artificial selection has favoured the same traits in many different species and varieties. The question of whether repeated evolution reflects changes at the same or different genes in each lineage can now be addressed using the domestication and improvement genes that have been identified in a variety of crops. Here, we document the genetic basis of nonpigmented ('white') pericarps in domesticated African rice (Oryza glaberrima) and compare it with the known genetic basis of the same trait in domesticated Asian rice (Oryza sativa). In some cases, white pericarps in African rice are apparently caused by unique mutations at the Rc gene, which also controls pericarp colour variation in Asian rice. In one case, white pericarps appear to reflect changes at a different gene or potentially a cis-regulatory region.  相似文献   

19.

Background

Artificial selection has caused rapid evolution in domesticated species. The identification of selection footprints across domesticated genomes can contribute to uncover the genetic basis of phenotypic diversity.

Methodology/Main Findings

Genome wide footprints of pig domestication and selection were identified using massive parallel sequencing of pooled reduced representation libraries (RRL) representing ∼2% of the genome from wild boar and four domestic pig breeds (Large White, Landrace, Duroc and Pietrain) which have been under strong selection for muscle development, growth, behavior and coat color. Using specifically developed statistical methods that account for DNA pooling, low mean sequencing depth, and sequencing errors, we provide genome-wide estimates of nucleotide diversity and genetic differentiation in pig. Widespread signals suggestive of positive and balancing selection were found and the strongest signals were observed in Pietrain, one of the breeds most intensively selected for muscle development. Most signals were population-specific but affected genomic regions which harbored genes for common biological categories including coat color, brain development, muscle development, growth, metabolism, olfaction and immunity. Genetic differentiation in regions harboring genes related to muscle development and growth was higher between breeds than between a given breed and the wild boar.

Conclusions/Significance

These results, suggest that although domesticated breeds have experienced similar selective pressures, selection has acted upon different genes. This might reflect the multiple domestication events of European breeds or could be the result of subsequent introgression of Asian alleles. Overall, it was estimated that approximately 7% of the porcine genome has been affected by selection events. This study illustrates that the massive parallel sequencing of genomic pools is a cost-effective approach to identify footprints of selection.  相似文献   

20.
Current knowledge on chicken domestication is reviewed on the basis of archaeological, historical and molecular data. Several domestication centres have been identified in South and South-East Asia. Gallus?gallus is the major ancestor species, but Gallus?sonneratii has also contributed to the genetic make-up of the domestic chicken. Genetic diversity is now distributed among traditional populations, standardized breeds and highly selected lines. Knowing the genome sequence has accelerated the identification of causal mutations determining major morphological differences between wild Gallus and domestic breeds. Comparative genome resequencing between Gallus and domestic chickens has identified 21 selective sweeps, one involving a non-synonymous mutation in the TSHR gene, which functional consequences remain to be explored. The resequencing approach could also identify candidate genes responsible of quantitative traits loci (QTL) effects in selected lines. Genomics is opening new ways to understand major switches that took place during domestication and subsequent selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号