首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified cytolytic T lymphocyte (CTL) proteases granzyme (gzm)A and gzmB with sublytic dose of perforin (perf) initiate distinct proapoptotic pathways. Their physiological relevance in CTL-mediated target cell apoptosis is elusive. Using ex vivo virus-immune CD8(+) T cells from mice deficient in perf, gzmA and/or gzmB, and the Fas-resistant EL4.F15 tumor target cell, we show that (a) CTL from gzmA(-/-) or gzmB(-/-) mice similarly induced early proapoptotic features, such as phosphatidyl serine (PS) exposure on plasma membrane, Delta Psi(m) loss, and reactive oxygen radical generation, though with distinct kinetics; (b) CTL from gzmA(-/-) but not from gzmB(-/-) mice activate caspase 3 and 9; (c) PS exposure induced by CTL from gzmA(-/-) or gzmB(-/-) mice is prevented, respectively, by caspase inhibitors or by reactive oxygen scavengers without interfering with target cell death; and (d) all gzm-induced apoptotic features analyzed depend critically on perf. Thus, perf is the principal regulator in CTL-mediated and gzm-facilitated intracellular processes. The ability of gzmA and gzmB to induce multiple independent cell death pathways may be the hosts response to circumvent evasion strategies of pathogens and tumors.  相似文献   

2.
In vivo, several mechanisms have been postulated to protect HIV-1-infected cells from NK surveillance. In vitro, previous research indicates HIV-1-infected autologous CD4(+) primary T cells are resistant to NK lysis. We hypothesized that NK lysis of HIV-1-infected target cells would be augmented by the presence of accessory cells and/or accessory cell factors. In this study, we show that stimulation of plasmacytoid dendritic cells (PDC) with the TLR9 agonist, CpG ODN 2216, triggered NK lysis of HIV-1-infected autologous CD4(+) primary T cells. PDC-stimulated NK lysis was dependent upon MHC class I (MHC-I) down-regulation on infected cells, and primary HIV-1 isolates that exhibited enhanced MHC-I down-regulation were more susceptible to NK-mediated lysis. PDC-stimulated NK lysis of HIV-1-infected autologous CD4(+) primary T cells was blocked by neutralizing Abs to type 1 IFN and was perforin/granzyme dependent. Overall, our data suggest that HIV-infected cells are not innately resistant to NK lysis, and that exogenous NK stimulation derived from PDC can trigger NK cytotoxicity against HIV-1-infected autologous CD4(+) primary T cells.  相似文献   

3.
Granzymes (gzm) are major components of the granules of cytolytic lymphocytes, natural killer and cytotoxic T cells. Their generally accepted mode of action consists of their directed secretion towards a virus-infected or neoplastic target cell and perforin-dependent delivery to the target cell cytosol, where they engage in various actions resulting in target cell apoptosis. Here, based on observations of infection of gzmAxB(-/-) mice with ectromelia virus, mousepox, we propose an additional--and distinct--function for gzmA and B. In this model, gzm constitute one of the first lines of defence of immune cells against virus infection of immune cells themselves. Accordingly, endogenous gzm interfere with viral replication in cytolytic lymphocytes either directly, as a result of their proteolytic activity, leading to destruction of viral proteins, or indirectly, via: (i) processes akin to the caspase cascade when acting as effector molecules in the induction of target cell apoptosis; or (ii) their capacity to induce early inflammatory mediators. We discuss the predictions of the model in the light of available data.  相似文献   

4.
Mast cells respond to pathogens and allergens by secreting a vast array of preformed and newly synthesized mediators, including enzymes, vasoactive amines, lipid mediators, cytokines and chemokines, thereby affecting innate and adaptive immune responses and pathogenesis. Here, we present evidence that skin-, but not lung-associated primary mast cells as well as in vitro-differentiated bone marrow-derived mast cells (BMMC) express granzyme (gzm) B, but not gzmA or perforin (perf). GzmB is associated with cytoplasmic granules of BMMC and secreted after Fcepsilon-receptor-mediated activation. BMMC from wild type but not gzmB-deficient mice cause cell death in susceptible adherent target cells, indicating that the perf-independent cytotoxicity of BMMC is executed by gzmB. Furthermore, gzmB induces a disorganization of endothelial cell-cell contacts. The data suggest that activated mast cells contribute, via secreted gzmB, to cell death, increased vascular permeability, leukocyte extravasation and subsequent inflammatory processes in affected tissues.  相似文献   

5.
6.
Viral infections can strongly stimulate both NK cell and allospecific CD8 T cell responses, and these same effector cells can lyse allogeneic cell lines in vitro. However, the impact of viral infections on the effector systems mediating rejection of allogeneic tissues in vivo has not been fully explored. Using in vivo cytotoxicity assays, we evaluated the effector systems mediating the rejection of CFSE-labeled allogeneic splenocytes after an infection of C57BL/6 (B6) mice with lymphocytic choriomeningitis virus. Naive B6 mice predominantly used a NK cell-effector mechanism to reject allogeneic splenocytes because they rejected BALB/C (H2(d)) splenocytes but not CBA (H2(k)) splenocytes, and the rejection was prevented by immunodepletion of NK1.1(+) or Ly49D(+) NK cells. This rapid and efficient in vivo cytotoxicity assay recapitulated the specificity of NK cell-mediated rejection seen in longer duration in vivo assays. However, as early as 1 day after infection with lymphocytic choriomeningitis virus, a CD8 T cell-dependent mechanism participated in the rejection process and a broader range of tissue haplotypes (e.g., H2(k)) was susceptible. The CD8 T cell-mediated in vivo rejection process was vigorous at a time postinfection (day 3) when NK cell effector functions are peaking, indicating that the effector systems used in vivo differed from those observed with in vitro assays measuring the killing of allogeneic cells. This rapid generation of allospecific CTL activity during a viral infection preceded the peak of viral epitope-specific T cell responses, as detected by in vivo or in vitro cytotoxicity assays.  相似文献   

7.
Understanding the cellular mechanisms that ensure an appropriate innate immune response against viral pathogens is an important challenge of biomedical research. In vitro studies have shown that natural killer (NK) cells purified from healthy donors can kill heterologous cell lines or autologous CD4+ T cell blasts exogenously infected with several strains of HIV-1. However, it is not known whether the deleterious effects of high HIV-1 viremia interferes with the NK cell-mediated cytolysis of autologous, endogenously HIV-1-infected CD4+ T cells. Here, we stimulate primary CD4+ T cells, purified ex vivo from HIV-1-infected viremic patients, with PHA and rIL2 (with or without rIL-7). This experimental procedure allows for the significant expansion and isolation of endogenously infected CD4+ T cell blasts detected by intracellular staining of p24 HIV-1 core antigen. We show that, subsequent to the selective down-modulation of MHC class-I (MHC-I) molecules, HIV-1-infected p24(pos) blasts become partially susceptible to lysis by rIL-2-activated NK cells, while uninfected p24(neg) blasts are spared from killing. This NK cell-mediated killing occurs mainly through the NKG2D activation pathway. However, the degree of NK cell cytolytic activity against autologous, endogenously HIV-1-infected CD4+ T cell blasts that down-modulate HLA-A and -B alleles and against heterologous MHC-I(neg) cell lines is particularly low. This phenomenon is associated with the defective surface expression and engagement of natural cytotoxicity receptors (NCRs) and with the high frequency of the anergic CD56(neg)/CD16(pos) subsets of highly dysfunctional NK cells from HIV-1-infected viremic patients. Collectively, our data demonstrate that the chronic viral replication of HIV-1 in infected individuals results in several phenotypic and functional aberrancies that interfere with the NK cell-mediated killing of autologous p24(pos) blasts derived from primary T cells.  相似文献   

8.
NK cells mediate acute rejection of MHC class I-deficient bone marrow cell (BMC) grafts. However, the exact cytotoxic mechanisms of NK cells during acute BMC graft rejection are not well defined. Although the granule exocytosis pathway plays a major role in NK cell-mediated rejection, alternative perforin-independent mechanisms also exist. By analyzing the anti-apoptotic effects of cellular Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein (cFLIP) overexpression, we investigated the possible role of death receptor-induced apoptosis in NK cell-mediated cytotoxicity. In the absence of perforin, we found that cFLIP overexpression reduces lysis of tumor cells by NK cells in vitro and in vivo. In addition, perforin-deficient NK cells were impaired in their ability to acutely reject cFLIP-overexpressing TAP-1 knockout stem cells. These results emphasize the importance of NK cell death receptor-mediated killing during BMC grafts in the absence of perforin.  相似文献   

9.
We have investigated the primary immunity generated in vivo by MHC class I-deficient and -competent tumor cell lines that expressed the NKG2D ligand retinoic acid early inducible-1 (Rae-1) beta. Rae-1beta expression on class I-deficient RMA-S lymphoma cells enhanced primary NK cell-mediated tumor rejection in vivo, whereas RMA-Rae-1beta tumor cells were rejected by a combination of NK cells and CD8(+) T cells. Rae-1beta expression stimulated NK cell cytotoxicity and IFN-gamma secretion in vitro, but not proliferation. Surprisingly, only NK cell perforin-mediated cytotoxicity, but not production of IFN-gamma, was critical for the rejection of Rae-1beta-expressing tumor cells in vivo. This distinct requirement for perforin activity contrasts with the NK cell-mediated rejection of MHC class I-deficient RMA-S tumor cells expressing other activating ligands such as CD70 and CD80. Thus, these results indicated that NKG2D acted as a natural cytotoxicity receptor to stimulate perforin-mediated elimination of ligand-expressing tumor cells.  相似文献   

10.
Leptin, a hormone‐cytokine produced primarily in the adipose tissue, has pleiotropic effects on many biological systems and in several cell types, including immune cells. Hyperleptinemia is associated with immune dysfunction and carcinogenesis. Natural killer (NK) cells are critical mediators of anti‐tumor immunity, and leptin receptor deficiency in mice leads to impaired NK function. It was thus decided to explore the in vitro effects of leptin on human NK cell function. NK‐92 cells were cultured during 48 h with different leptin concentrations [absence, 10 (physiological), 100 (obesity), or 200 ng/ml (pharmacology)]. Their metabolic activity was assessed using the resazurin test. NK‐92 cell cytotoxicity and intracellular IFN‐γ production were analyzed by flow cytometry. NK‐92 cell mRNA and protein expression levels of cytotoxic effectors were determined by RT‐qPCR and Western blot. In our conditions, leptin exerted a dose‐dependent stimulatory effect on NK‐92 cell metabolic activity. In addition, high leptin concentrations enhanced NK‐92 cell cytotoxicity against K562‐EGFP and MDA‐MB‐231‐EGFP target cells and inversely reduced cytotoxicity against the MCF‐7‐EGFP target. At 100 ng/ml, leptin up‐regulated both NK cell granzyme B and TRAIL protein expressions and concomitantly down‐regulated perforin expression without affecting Fas‐L expression. In response to PMA/ionomycin stimulation, the proportion of IFN‐γ expressing NK‐92 cells increased with 100 and 200 ng/ml of leptin. In conclusion, leptin concentration, at obesity level, variably increased NK‐92 cell metabolic activity and modulated NK cell cytotoxicity according to the target cells. The underlying mechanisms are partly due to an up‐regulation of TRAIL and IFN‐γ expression and a down‐regulation of perforin. J. Cell. Physiol. 228: 1202–1209, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Proteinase inhibitor 9 (PI-9, SerpinB9) is the only known human intracellular granzyme B inhibitor. Whether expression of PI-9 is sufficient to block cytolysis induced by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells remains controversial. To evaluate the roles of PI-9, we isolated and tested three lines of stably transfected HeLa cells expressing wild-type PI-9 and one line expressing an inactive mutant PI-9. Expressions of wild-type PI-9, but not the inactive mutant PI-9, inhibited cytolysis induced by human NK92 and NKL natural killer cells. Expression of high levels of PI-9 is therefore sufficient to protect human cells against NK cell-mediated cell death. Using two assays, we show that expressing wild-type PI-9, but not the inactive mutant PI-9, blocks Fas/Fas ligand (Fas/FasL)-mediated apoptosis. PI-9 expression has no effect on etoposide-induced apoptosis. HeLa cells exhibiting substantial resistance to Fas/FasL-mediated apoptosis contain 2- to 3-fold higher PI-9 levels than HCT116 human colon cancer cells and 2- to 3-fold lower PI-9 levels than MCF7/ERHA breast cancer cells, in which PI-9 is strongly induced by estrogens, and by tamoxifen. Expression of increasing levels of PI-9 in target cells may progressively inhibit immune surveillance by blocking NK and CTL-induced cytotoxicity through the perforin/granzyme pathway and then through the Fas/FasL pathway.  相似文献   

12.
Perforin mediates target cell apoptosis by CTLs and NK cells. Although perforin expression correlates strongly with acute allograft rejection, perforin-deficient mice reject allografts with the same kinetics as wild-type recipients. In this study, we tested the hypothesis that while perforin is dispensable for acute rejection, it is essential for down-regulating the alloimmune response by inducing the apoptosis of host immune cells. Using a skin transplantation model, we found that perforin-deficient mice are resistant to the induction of allograft acceptance by agents that block T cell costimulation. Failure to induce allograft acceptance in these mice was observed irrespective of whether the alloimmune response was CD4 or CD8 T cell-mediated and could be attributed to defective apoptosis of activated CD4 and CD8 T cells. In contrast, perforin did not influence T cell proliferation. Therefore, perforin is an essential immunoregulatory molecule that may be required for the induction of transplantation tolerance.  相似文献   

13.
 Bispecific monoclonal antibodies (bi-mAb), directed against a tumor-associated antigen and the CD3 or CD28 antigen on T lymphocytes, induce activation of resting T lymphocytes and target-specific tumor cell lysis. We now show that both necrosis and apoptosis contribute to T-cell-mediated tumor cell destruction. Even though T cells up-regulate FAS/APO-1 expression upon bi-mAb stimulation, FAS/APO-1-mediated apoptosis does not contribute to bi-mAb-mediated destruction of Hodgkin’s cells. CD8+ lymphocytes were the most potent effectors of bi-mAb-mediated cytotoxicity and had the highest levels of mRNA coding for perforin and granzyme A and B. Ca2+-complexing agents, which abrogate perforin activity, led to decreased levels of necrosis, while inhibition of granzyme activity in effector or target cells had a similar effect on apoptosis. Granzyme-mediated apoptosis critically dependent on the proliferative state of the target cells, while perforin-induced necrosis was not cell-cycle-dependent. Our results underline the importance of the expression levels of perforin and granzymes in the effector T cells and of the proliferative state of the target cells in bi-mAb-mediated apoptosis and necrosis of tumor cells. Received: 5 December 1996 / Accepted: 16 January 1997  相似文献   

14.
This study examines the effect of fixed AK-5 tumour cells on rat NK cells. Co-culture of NK cells with fixed tumour cells augmented the cytotoxicity of NK cells against NK-sensitive targets, YAC-1 and AK-5, and induced the secretion of IFN-gamma by NK cells. Antibody against IFN-gamma suppressed the anti-tumour activity of NK cells, whereas the addition of T cells during co-culture enhanced this activity. However, macrophages and B cells had no significant effect when present during co-culture with NK cells. All the inducible cytotoxicity was contained within the NK (CD161+) and NKT (CD3+, CD161+) subsets of lymphocytes. However, in the presence of T cells, the cytolytic potential of NKT cells was higher than that of NK cells alone. The augmentation of cytotoxic activity of NK cells by AK-5 cells in presence of T cells was dependent on IL-2 and IFN-gamma secretion. NK cell activation was blocked by specific antibodies to IL-2 and IFN-gamma in the presence of T cells. Interaction between fixed AK-5 cells with NK and T cell populations induced the expression of Fas-L and perforin in NK cells. These data demonstrate that fixed AK-5 cells initiated cytokine synthesis by NK cells, and the enhanced cytotoxic activity in the presence of T cells was induced as a consequence of the products secreted by activated T lymphocytes. The present observations reflect the possible interactions taking place in vivo after the transplantation of AK-5 tumour in animals. They also suggest direct activation of NK cells after their interaction with the tumour cells.  相似文献   

15.
NK cells are the primary effectors mediating acute rejection of incompatible bone marrow cell grafts. To reduce rejection, we evaluated the ability of chloroquine (CHQ) to prevent perforin-dependent NK cell activity. Perforin is a key cytotoxic component released from the lytic granules of activated NK cells. Generation of functional perforin requires an acidic protease activity that occurs in the secretory, lytic lysosomes. Our hypothesis was that CHQ, a lysosomotropic reagent, would raise the pH of the acidic compartment in which perforin is processed and thereby block perforin maturation and cytotoxicity. We have measured NK cytotoxicity in vivo by clearance of YAC-1 tumor cells from the lungs and by rejection of incompatible bone marrow transplants and in vitro by cytolysis of YAC-1 and Jurkat cells. The engraftment of bone marrow cells was monitored by recolonization of the spleen with hemopoietic cells from transplants of MHC class I-deficient bone marrow cells into lethally irradiated recipient mice. Transplant rejection was compared in two inbred strains of mice: 129, which apparently use perforin-dependent cytotoxicity, and C57BL/6, in which rejection can be perforin-independent. CHQ treatment reduced NK cell activity in 129 mice in which perforin is important for mediating rejection. CHQ affected the fraction of NK cell cytolysis that was Fas independent. In addition, we found that CHQ prevents perforin processing by LAK cells in vitro. These data indicate that CHQ may impair rejection of incompatible bone marrow transplants and other functions mediated by NK and cytotoxic T cells.  相似文献   

16.
In this report we questioned the current view that the two principal cytotoxic pathways, the exocytosis and the Fas ligand (FasL)/Fas-mediated pathway, have largely nonoverlapping biological roles. For this purpose we have analyzed the response of mice that lack Fas as well as granzyme A (gzmA) and gzmB (FasxgzmAxB(-/-)) to infection with lymphocytic choriomeningitis virus (LCMV). We show that FasxgzmAxB(-/-) mice, in contrast to B6, Fas(-/-), and gzmAxB(-/-) mice, do not recover from a primary infection with LCMV, in spite of the expression of comparable numbers of LCMV-immune and gamma interferon-producing cytotoxic T lymphocytes (CTL) in all mouse strains tested. Ex vivo-derived FasxgzmAxB(-/-) CTL lacked nucleolytic activity and expressed reduced cytolytic activity compared to B6 and Fas(-/-) CTL. Furthermore, virus-immune CTL with functional FasL and perforin (gzmAxB(-/-)) are more potent in causing target cell apoptosis in vitro than those expressing FasL alone (perfxgzmAxB(-/-)). This synergistic effect of perforin on Fas-mediated nucleolysis of target cells is indicated by the fact that, compared to perfxgzmAxB(-/-) CTL, gzmAxB(-/-) CTL induced (i) an accelerated decrease in mitochondrial transmembrane potential, (ii) increased generation of reactive oxygen species, and (iii) accelerated phosphatidylserine exposure on plasma membranes. We conclude that perforin does not mediate recovery from LCMV by itself but plays a vital role in both gzmA/B and FasL/Fas-mediated CTL activities, including apoptosis and control of viral infections.  相似文献   

17.
When encountering target cells, NK (natural killer) cells exocytose Pfn (perforin) and granzyme B to kill challengers. We previously reported that granzyme B is recycled and reused by NK cells via clathrin-dependent endocytosis. However, whether Pfn, a main secretory vesicle content, indispensible to granzyme B killing, undergoes endocytosis remains unknown. We demonstrate that Pfn is recaptured by early endosomes of NK cells via a clathrin-dependent endocytosis after target cell stimulation. Inhibition of clathrin-dependent endocytosis significantly attenuated the cytotoxicity of NK cells. The data suggest that the recovery of Pfn contributes to the cytotoxicity of NK cells. The assay of endocytosis of lytic molecule presents a particular focus for exploring the mechanism of abnormal cytotoxicity of NK cells.  相似文献   

18.
Granule exocytosis is the main pathway for the immune elimination of virus-infected cells and tumour cells by cytotoxic T lymphocytes and natural killer cells. After target-cell recognition, release of the cytotoxic granule contents into the immunological synapse formed between the killer cell and its target induces apoptosis. The granules contain two membrane-perturbing proteins, perforin and granulysin, and a family of serine proteases known as granzymes, complexed with the proteoglycan serglycin. In this review, I discuss recent insights into the mechanisms of granule-mediated cytotoxicity, focusing on how granzymes A, B and C and granulysin activate cell death through caspase-independent pathways.  相似文献   

19.
20.
NKG2D is an activation receptor on NK cells and has been demonstrated as a primary cytotoxicity receptor for mouse NK cells. Primary rejection of class I-deficient RMA-S lymphoma cells expressing the NKG2D ligand, retinoic acid early inducible-1beta, was critically dependent upon NK cell perforin and occurred independently of T cells. NKG2D-triggered NK cell rejection of RMA-S-retinoic acid early inducible-1beta tumor primed a secondary tumor-specific T cell response mediated by both CD4+ and CD8+ T cells in the effector phase. Surprisingly, during the priming phase, CD4+ T cells, but not CD8+ T cells, were also required to generate this secondary T cell immunity; however, T cell priming was independent of Th1 cytokines, such as IFN-gamma and IL-12. These data imply a novel pathway for priming T cell immunity, that is, stimulated upon NK cell-mediated cytotoxicity of NKG2D ligand-expressing tumor cells, dependent upon CD4+ T cells in the primary phase, and independent of conventional Th1-type immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号