首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innate immunity in vertebrates and invertebrates is of central importance as a biological programme for host defence against pathogenic challenges. To find novel components of the Drosophila immune deficiency (IMD) pathway in cultured haemocyte-like cells, we screened an RNA interference library for modifiers of a pathway-specific reporter. Selected modifiers were further characterized using an independent reporter assay and placed into the pathway in relation to known pathway components. Interestingly, the screen identified the Inhibitor of Apoptosis Protein 2 (IAP 2) as being required for IMD signalling. Whereas loss of DIAP 1, the other member of the IAP protein family in Drosophila, leads to apoptosis, we show that IAP 2 is dispensable for cell viability in haemocyte-like cells. Cell-based epistasis experiments show that IAP 2 acts at the level of Tak 1 (transforming growth factor-beta-activated kinase 1). Our results indicate that IAP gene family members may have acquired other functions, such as the regulation of the tumour necrosis factor-like IMD pathway during innate immune responses.  相似文献   

2.
To elucidate the mechanisms involved in early events in Chlamydia trachomatis infection, we conducted a large scale unbiased RNA interference screen in Drosophila melanogaster S2 cells. This allowed identification of candidate host factors in a simple non-redundant, genetically tractable system. From a library of 7,216 double stranded RNAs (dsRNA), we identified approximately 226 host genes, including two tyrosine kinases, Abelson (Abl) kinase and PDGF- and VEGF-receptor related (Pvr), a homolog of the Platelet-derived growth factor receptor (PDGFR). We further examined the role of these two kinases in C. trachomatis binding and internalization into mammalian cells. Both kinases are phosphorylated upon infection and recruited to the site of bacterial attachment, but their roles in the infectious process are distinct. We provide evidence that PDGFRbeta may function as a receptor, as inhibition of PDGFRbeta by RNA interference or by PDGFRbeta neutralizing antibodies significantly reduces bacterial binding, whereas depletion of Abl kinase has no effect on binding. Bacterial internalization can occur through activation of PDGFRbeta or through independent activation of Abl kinase, culminating in phosphorylation of the Rac guanine nucleotide exchange factor (GEF), Vav2, and two actin nucleators, WAVE2 and Cortactin. Finally, we show that TARP, a bacterial type III secreted actin nucleator implicated in entry, is a target of Abl kinase. Together, our results demonstrate that PDGFRbeta and Abl kinases function redundantly to promote efficient uptake of this obligate intracellular parasite.  相似文献   

3.
Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250?000 library transformants for conditional growth inhibitory recombinant clones from two shotgun genomic libraries of E.?coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes, while 18 originated from nonessential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12-fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E.?coli using regulated asRNA expression.  相似文献   

4.
Tumor necrosis factor alpha (TNF-α) is a potent inflammatory cytokine secreted upon cellular stress as well as immunological stimuli and is implicated in the pathology of inflammatory diseases and cancer. The therapeutic potential of modifying TNF-α pathway activity has been realized in several diseases, and antagonists of TNF-α have reached clinical applications. While much progress in the understanding of signaling downstream of the TNF-α receptor complex has been made, the compendium of factors required for signal transduction is still not complete. In order to find novel regulators of proinflammatory signaling induced by TNF-α, we conducted a genome-wide small interfering RNA screen in human cells. We identified several new candidate modulators of TNF-α signaling, which were confirmed in independent experiments. Specifically, we show that caspase 4 is required for the induction of NF-κB activity, while it appears to be dispensable for the activation of the Jun N-terminal protein kinase signaling branch. Taken together, our experiments identify caspase 4 as a novel regulator of TNF-α-induced NF-κB signaling that is required for the activation of IκB kinase. We further provide the genome-wide RNA interference data set as a compendium in a format compliant with minimum information about an interfering RNA experiment (MAIRE).  相似文献   

5.
In addition to its central role in energy production, oxygen has pervasive regulatory actions. Hypoxia (oxygen limitation) triggers the shutdown of major cellular processes, including gene expression. We carried out a genome-wide RNA interference (RNAi) screen in Drosophila S2 cells for functions required to down-regulate translation during hypoxia. RNAi knockdown of specific genes allowed induction of a green fluorescent protein (GFP) reporter gene and continued protein synthesis during hypoxia. Among the identified genes, Tsc1 and Tsc2, which together form the tuberose sclerosis complex that negatively regulates target of rapamycin (TOR) kinase, gave an especially strong effect. This finding is consistent with the involvement of TOR in promoting translation. Another gene required for efficient inhibition of protein translation during hypoxia, the protein tyrosine phosphatase 61F (Ptp61F), down-regulates TOR activity under hypoxia. Lack of Ptp61F or Tsc2 improves cell survival under prolonged hypoxia in a TOR-dependent manner. Our results identify Ptp61F as a novel modulator of TOR activity and suggest that its function during hypoxia contributes to the down-regulation of protein synthesis.  相似文献   

6.
The discovery of RNA interference (RNAi) and the development of technologies exploiting its biology have enabled scientists to rapidly examine the consequences of depleting a particular gene product in a cell or an animal. The availability of genome-wide RNAi libraries targeting the mouse and human genomes has made it possible to carry out large scale, phenotype-based screens, which have yielded seminal information on diverse cellular processes ranging from virology to cancer biology. Today, several strategies are available to perform RNAi screens, each with their own technical and monetary considerations. Special care and budgeting must be taken into account during the design of these screens in order to obtain reliable results. In this review, we discuss a number of critical aspects to consider when planning an effective RNAi screening strategy, including selecting the right biological system, designing an appropriate selection scheme, optimizing technical aspects of the screen, and validating and verifying the hits. Similar to an artistic production, what happens behind the screen has a direct impact on its success.  相似文献   

7.
8.
Genetic screens in the yeast Saccharomyces cerevisiae have identified many proteins involved in the secretory pathway, most of which have orthologues in higher eukaryotes. To investigate whether there are additional proteins that are required for secretion in metazoans but are absent from yeast, we used genome‐wide RNA interference (RNAi) to look for genes required for secretion of recombinant luciferase from Drosophila S2 cells. This identified two novel components of the secretory pathway that are conserved from humans to plants. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun (C4orf41) blocks Golgi exit. Kish is a small membrane protein with a previously uncharacterised orthologue in yeast. The screen also identified Drosophila orthologues of almost 60% of the yeast genes essential for secretion. Given this coverage, the small number of novel components suggests that contrary to previous indications the number of essential core components of the secretory pathway is not much greater in metazoans than in yeasts.  相似文献   

9.
Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55gamma and PR55delta as inhibitors of c-Jun NH(2)-terminal kinase (JNK) activation by UV irradiation. We show that PR55gamma binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55gamma and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55gamma.  相似文献   

10.
RNA interference in cancer   总被引:11,自引:0,他引:11  
In the recent years, RNA interference (RNAi) has emerged as a major regulatory mechanism in eukaryotic gene expression. The realization that changes in the levels of microRNAs are directly associated with cancer led to the recognition of a new class of tumor suppressors and oncogenes. Moreover, RNAi has been turned into a potent tool for artificially modulating gene expression through the introduction of short interfering RNAs. A plethora of individual inhibitory RNAs as well as several large collections of these reagents have been generated. The systems for stable and regulated expression of these molecules emerged as well. These tools have helped to delineate the roles of various cellular factors in oncogenesis and tumor suppression and laid the foundation for new approaches in gene discovery. Furthermore, successful inhibition of tumor cell growth by RNAi aimed at oncogenes in vitro and in vivo supports the enthusiasm for potential therapeutic applications of this technique. In this article we review the evidence of microRNA involvement in cancer, the use of short interfering RNAs in forward and reverse genetics of this disease, and as well as both the benefits and limitations of experimental RNAi.  相似文献   

11.
12.
Defects in chromosome-microtubule attachment trigger spindle-checkpoint activation and delay mitotic progression. How microtubule attachment is sensed and integrated into the steps of checkpoint-signal amplification is poorly understood. In a functional genomic screen targeting human kinases and phosphatases, we identified a microtubule affinity-regulating kinase kinase, TAO1 (also known as MARKK) as an important regulator of mitotic progression, required for both chromosome congression and checkpoint-induced anaphase delay. TAO1 interacts with the checkpoint kinase BubR1 and promotes enrichment of the checkpoint protein Mad2 at sites of defective attachment, providing evidence for a regulatory step that precedes the proposed Mad2-Mad1 dependent checkpoint-signal amplification step. We propose that the dual functions of TAO1 in regulating microtubule dynamics and checkpoint signalling may help to coordinate the establishment and monitoring of correct congression of chromosomes, thereby protecting genomic stability in human cells.  相似文献   

13.
The Replication Stress Response (RSR) is a signaling network that recognizes challenges to DNA replication and coordinates diverse DNA repair and cell-cycle checkpoint pathways. Gemcitabine is a nucleoside analogue that causes cytotoxicity by inducing DNA replication blocks. Using a synthetic lethal screen of a RNAi library of nuclear enzymes to identify genes that when silenced cause gemcitabine sensitization or resistance in human triple-negative breast cancer cells, we identified NIMA (never in mitosis gene A)-related kinase 9 (NEK9) as a key component of the RSR. NEK9 depletion in cells leads to replication stress hypersensitivity, spontaneous accumulation of DNA damage and RPA70 foci, and an impairment in recovery from replication arrest. NEK9 protein levels also increase in response to replication stress. NEK9 complexes with CHK1, and moreover, NEK9 depletion impairs CHK1 autophosphorylation and kinase activity in response to replication stress. Thus, NEK9 is a critical component of the RSR that promotes CHK1 activity, maintaining genome integrity following challenges to DNA replication.  相似文献   

14.
15.
Changes in cellular or subcellular Ca2+ concentrations play essential roles in plant development and in the responses of plants to their environment. However, the mechanisms through which Ca2+ acts, the downstream signaling components, as well as the relationships among the various Ca2+-dependent processes remain largely unknown. Using an RNA interference-based screen for gene function in Medicago truncatula, we identified a gene that is involved in root development. Silencing Ca2+-dependent protein kinase1 (CDPK1), which is predicted to encode a Ca2+-dependent protein kinase, resulted in significantly reduced root hair and root cell lengths. Inactivation of CDPK1 is also associated with significant diminution of both rhizobial and mycorrhizal symbiotic colonization. Additionally, microarray analysis revealed that silencing CDPK1 alters cell wall and defense-related gene expression. We propose that M. truncatula CDPK1 is a key component of one or more signaling pathways that directly or indirectly modulates cell expansion or cell wall synthesis, possibly altering defense gene expression and symbiotic interactions.  相似文献   

16.
Unlike many other organisms, Drosophila maintains its telomeres by the transposition of retrotransposons to chromosome ends. Recent work shows that proteins in the RNA interference pathway specifically regulate the expression of these retrotransposons and frequency of transposition in germline cells, but do not affect retrotransposon expression or telomere function in the soma.  相似文献   

17.
18.
Manipulation of gene expression is one of the most informative ways to study gene function. Genetic screens have been an informative method to identify genes involved in developmental processes. In the zebrafish, loss-of-function screens have been the primary approach for these studies. We sought to complement loss-of-function screens using an unbiased approach to overexpress genes with a Gal4-UAS based system, similar to the gain-of-function screens in Drosophila. Using MMLV as a mutagenic vector, a cassette containing a UAS promoter was readily inserted in the genome, often at the 5′ end of genes, allowing Gal4-dependent overexpression. We confirmed that genes downstream of the viral insertions were overexpressed in a Gal4-VP16 dependent manner. We further demonstrate that misexpression of one such downstream gene gucy2F, a membrane-bound guanylate cyclase, throughout the nervous system results in multiple defects including a loss of forebrain neurons. This suggests proper control of cGMP production is important in neuronal survival. From this study, we propose that this gain-of-function approach can be applied to large-scale genetic screens in a vertebrate model organism and may reveal previously unknown gene function. Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. FJ151012, FJ151013, and FJ151014.  相似文献   

19.
RNA interference (RNAi) has emerged as one of the most important discoveries of the last years in the field of molecular biology. Following clarification of this highly conserved endogenous gene silencing mechanism, RNAi has largely been exploited as a powerful tool to uncover the function of specific genes and to understand the effects of selective gene silencing in mammalian cells both in vitro and in vivo. RNAi can be induced by direct introduction of chemically synthesized siRNAs into the cell or by the use of plasmid and viral vectors encoding for siRNA allowing a more stable RNA knockdown. Potential application of this technique both as a research tool and for therapeutic purposes has led to an extensive effort to overcome some critical constraints which may limit its successful application in vivo, including off-target and non-specific effects, as well as the relatively poor stability of siRNA. This review provides a brief overview of the RNAi mechanism and of its application in preclinical animal models of cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号