首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With multiple genome-wide association studies (GWAS) performed across autoimmune diseases, there is a great opportunity to study the homogeneity of genetic architectures across autoimmune disease. Previous approaches have been limited in the scope of their analysis and have failed to properly incorporate the direction of allele-specific disease associations for SNPs. In this work, we refine the notion of a genetic variation profile for a given disease to capture strength of association with multiple SNPs in an allele-specific fashion. We apply this method to compare genetic variation profiles of six autoimmune diseases: multiple sclerosis (MS), ankylosing spondylitis (AS), autoimmune thyroid disease (ATD), rheumatoid arthritis (RA), Crohn''s disease (CD), and type 1 diabetes (T1D), as well as five non-autoimmune diseases. We quantify pair-wise relationships between these diseases and find two broad clusters of autoimmune disease where SNPs that make an individual susceptible to one class of autoimmune disease also protect from diseases in the other autoimmune class. We find that RA and AS form one such class, and MS and ATD another. We identify specific SNPs and genes with opposite risk profiles for these two classes. We furthermore explore individual SNPs that play an important role in defining similarities and differences between disease pairs. We present a novel, systematic, cross-platform approach to identify allele-specific relationships between disease pairs based on genetic variation as well as the individual SNPs which drive the relationships. While recognizing similarities between diseases might lead to identifying novel treatment options, detecting differences between diseases previously thought to be similar may point to key novel disease-specific genes and pathways.  相似文献   

2.
Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS) to investigate shared single nucleotide polymorphisms (SNPs) between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals), applying new False Discovery Rate (FDR) methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG), low density lipoproteins (LDL), high density lipoproteins (HDL)] and a selection of archetypal immune-mediated diseases (Crohn’s disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis). We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88), LDL (n = 87) and HDL (n = 52). Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2) and intestinal host-microbe interactions (e.g. ATG16L1). We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.  相似文献   

3.
Genome-wide association studies (GWAS) have detected many disease associations. However, the reported variants tend to explain small fractions of risk, and there are doubts about issues such as the portability of findings over different ethnic groups or the relative roles of rare versus common variants in the genetic architecture of complex disease. Studying the degree of sharing of disease-associated variants across populations can help in solving these issues. We present a comprehensive survey of GWAS replicability across 28 diseases. Most loci and SNPs discovered in Europeans for these conditions have been extensively replicated using peoples of European and East Asian ancestry, while the replication with individuals of African ancestry is much less common. We found a strong and significant correlation of Odds Ratios across Europeans and East Asians, indicating that underlying causal variants are common and shared between the two ancestries. Moreover, SNPs that failed to replicate in East Asians map into genomic regions where Linkage Disequilibrium patterns differ significantly between populations. Finally, we observed that GWAS with larger sample sizes have detected variants with weaker effects rather than with lower frequencies. Our results indicate that most GWAS results are due to common variants. In addition, the sharing of disease alleles and the high correlation in their effect sizes suggest that most of the underlying causal variants are shared between Europeans and East Asians and that they tend to map close to the associated marker SNPs.  相似文献   

4.
Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases.  相似文献   

5.
Aging is the single largest risk factor for chronic disease. Studies in model organisms have identified conserved pathways that modulate aging rate and the onset and progression of multiple age‐related diseases, suggesting that common pathways of aging may influence age‐related diseases in humans as well. To determine whether there is genetic evidence supporting the notion of common pathways underlying age‐related diseases, we analyzed the genes and pathways found to be associated with five major categories of age‐related disease using a total of 410 genomewide association studies (GWAS). While only a small number of genes are shared among all five disease categories, those found in at least three of the five major age‐related disease categories are highly enriched for apoliprotein metabolism genes. We found that a more substantial number of gene ontology (GO) terms are shared among the 5 age‐related disease categories and shared GO terms include canonical aging pathways identified in model organisms, such as nutrient‐sensing signaling, translation, proteostasis, stress responses, and genome maintenance. Taking advantage of the vast amount of genetic data from the GWAS, our findings provide the first direct evidence that conserved pathways of aging simultaneously influence multiple age‐related diseases in humans as has been demonstrated in model organisms.  相似文献   

6.

Background

Recent genome-wide association (GWA) studies have provided compelling evidence of association between genetic variants and common complex diseases. These studies have made use of cases and controls almost exclusively from populations of European ancestry and little is known about the frequency of risk alleles in other populations. The present study addresses the transferability of disease associations across human populations by examining levels of population differentiation at disease-associated single nucleotide polymorphisms (SNPs).

Methods

We genotyped ~1000 individuals from 53 populations worldwide at 25 SNPs which show robust association with 6 complex human diseases (Crohn's disease, type 1 diabetes, type 2 diabetes, rheumatoid arthritis, coronary artery disease and obesity). Allele frequency differences between populations for these SNPs were measured using Fst. The Fst values for the disease-associated SNPs were compared to Fst values from 2750 random SNPs typed in the same set of individuals.

Results

On average, disease SNPs are not significantly more differentiated between populations than random SNPs in the genome. Risk allele frequencies, however, do show substantial variation across human populations and may contribute to differences in disease prevalence between populations. We demonstrate that, in some cases, risk allele frequency differences are unusually high compared to random SNPs and may be due to the action of local (i.e. geographically-restricted) positive natural selection. Moreover, some risk alleles were absent or fixed in a population, which implies that risk alleles identified in one population do not necessarily account for disease prevalence in all human populations.

Conclusion

Although differences in risk allele frequencies between human populations are not unusually large and are thus likely not due to positive local selection, there is substantial variation in risk allele frequencies between populations which may account for differences in disease prevalence between human populations.  相似文献   

7.
Pathway-based analysis approach has exploded in use during the last several years. It is successful in recognizing additional biological insight of disease and finding groupings of risk genes that represent disease developing processes. Therefore, shared pathways, with pleiotropic effects, are important for understanding similar pathogenesis and indicating the common genetic origin of certain diseases. Here, we present a pathway analysis to reveal the potential disease associations between RA and three potential RA-related autoimmune diseases: psoriasis, diabetes mellitus, type 1 (T1D) and systemic lupus erythematosus (SLE). First, a comprehensive knowledge mining of public databases is performed to discover risk genes associated with RA, T1D, SLE and psoriasis; then by enrichment test of these genes, disease-related risk pathways are detected to recognize the pathways common for RA and three other diseases. Finally, the underlying disease associations are evaluated with the association rules mining method. In total, we identify multiple RA risk pathways with significant pleiotropic effects, the most unsurprising of which are the immunology related pathways. Meanwhile for the first time we highlight the involvement of the viral myocarditis pathway related to cardiovascular disease (CVD) in autoimmune diseases such as RA, psoriasis, T1D and SLE. Further Association rule mining results validate the strong association between RA and T1D and RA and SLE. It is clear that pleiotropy is a common property of pathways associated with disease traits. We provide novel pathway associations among RA and three autoimmune diseases. These results ascertain that there are shared genetic risk profiles that predispose individuals to autoimmune diseases.  相似文献   

8.
Chen R  Davydov EV  Sirota M  Butte AJ 《PloS one》2010,5(10):e13574
Many DNA variants have been identified on more than 300 diseases and traits using Genome-Wide Association Studies (GWASs). Some have been validated using deep sequencing, but many fewer have been validated functionally, primarily focused on non-synonymous coding SNPs (nsSNPs). It is an open question whether synonymous coding SNPs (sSNPs) and other non-coding SNPs can lead to as high odds ratios as nsSNPs. We conducted a broad survey across 21,429 disease-SNP associations curated from 2,113 publications studying human genetic association, and found that nsSNPs and sSNPs shared similar likelihood and effect size for disease association. The enrichment of disease-associated SNPs around the 80(th) base in the first introns might provide an effective way to prioritize intronic SNPs for functional studies. We further found that the likelihood of disease association was positively associated with the effect size across different types of SNPs, and SNPs in the 3' untranslated regions, such as the microRNA binding sites, might be under-investigated. Our results suggest that sSNPs are just as likely to be involved in disease mechanisms, so we recommend that sSNPs discovered from GWAS should also be examined with functional studies.  相似文献   

9.
Deviation from multiplicativity of genetic risk factors is biologically plausible and might explain why Genome-wide association studies (GWAS) so far could unravel only a portion of disease heritability. Still, evidence for SNP-SNP epistasis has rarely been reported, suggesting that 2-SNP models are overly simplistic. In this context, it was recently proposed that the genetic architecture of complex diseases could follow limiting pathway models. These models are defined by a critical risk allele load and imply multiple high-dimensional interactions. Here, we present a computationally efficient one-degree-of-freedom “supra-multiplicativity-test” (SMT) for SNP sets of size 2 to 500 that is designed to detect risk alleles whose joint effect is fortified when they occur together in the same individual. Via a simulation study we show that the SMT is powerful in the presence of threshold models, even when only about 30–45% of the model SNPs are available. In addition, we demonstrate that the SMT outperforms standard interaction analysis under recessive models involving just a few SNPs. We apply our test to 10 consensus Alzheimer’s disease (AD) susceptibility SNPs that were previously identified by GWAS and obtain evidence for supra-multiplicativity () that is not attributable to either two-way or three-way interaction.  相似文献   

10.
Most common diseases are caused by multiple genetic and environmental factors. In the last 2 years, genome-wide association studies (GWAS) have identified polymorphisms that are associated with risk to common disease, but the effect of any one risk allele is typically small. By combining information from many risk variants, will it be possible to predict accurately each individual person's genetic risk for a disease? In this review we consider the lessons from GWAS and the implications for genetic risk prediction to common disease. We conclude that with larger GWAS sample sizes or by combining studies, accurate prediction of genetic risk will be possible, even if the causal mutations or the mechanisms by which they affect susceptibility are unknown.  相似文献   

11.
Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed disparity in T2D incidence rates across ethnic populations.  相似文献   

12.
Z Kang  F Peng  T Ling 《Gene》2012,497(2):298-300
Since vascular risk factors commonly act for susceptibility to Alzheimer's disease (AD) and vascular dementia (VaD) by declining cognitive abilities, we conducted a genetic association study to identify their common underlying genetic factors. We selected single nucleotide polymorphisms (SNPs) which had been previously discovered for association with AD, and case and control associations of VaD were examined with the individual SNPs using 207 patients with VaD and 207 sex- and age-matched control subjects. As a result, no significant associations of susceptibility to VaD with 13 selected SNPs were observed even without employing a multiple test (P>0.05). This study suggests that genetics of VaD might be quite different from that of AD, and cautions should be taken especially when inferences about genetic factors are made with patients with mixed dementia.  相似文献   

13.
Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein-protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease.  相似文献   

14.
15.
Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
Craig C. Teerlink  Stephen N. Thibodeau  Shannon K. McDonnell  Daniel J. Schaid  Antje Rinckleb  Christiane Maier  Walther Vogel  Geraldine Cancel-Tassin  Christophe Egrot  Olivier Cussenot  William D. Foulkes  Graham G. Giles  John L. Hopper  Gianluca Severi  Ros Eeles  Douglas Easton  Zsofia Kote-Jarai  Michelle Guy  Kathleen A. Cooney  Anna M. Ray  Kimberly A. Zuhlke  Ethan M. Lange  Liesel M. FitzGerald  Janet L. Stanford  Elaine A. Ostrander  Kathleen E. Wiley  Sarah D. Isaacs  Patrick C. Walsh  William B. Isaacs  Tiina Wahlfors  Teuvo Tammela  Johanna Schleutker  Fredrik Wiklund  Henrik Grönberg  Monica Emanuelsson  John Carpten  Joan Bailey-Wilson  Alice S. Whittemore  Ingrid Oakley-Girvan  Chih-Lin Hsieh  William J. Catalona  S. Lilly Zheng  Guangfu Jin  Lingyi Lu  Jianfeng Xu  Nicola J. Camp  Lisa A. Cannon-Albright 《Human genetics》2014,133(3):347-356
Previous GWAS studies have reported significant associations between various common SNPs and prostate cancer risk using cases unselected for family history. How these variants influence risk in familial prostate cancer is not well studied. Here, we analyzed 25 previously reported SNPs across 14 loci from prior prostate cancer GWAS. The International Consortium for Prostate Cancer Genetics (ICPCG) previously validated some of these using a family-based association method (FBAT). However, this approach suffered reduced power due to the conditional statistics implemented in FBAT. Here, we use a case–control design with an empirical analysis strategy to analyze the ICPCG resource for association between these 25 SNPs and familial prostate cancer risk. Fourteen sites contributed 12,506 samples (9,560 prostate cancer cases, 3,368 with aggressive disease, and 2,946 controls from 2,283 pedigrees). We performed association analysis with Genie software which accounts for relationships. We analyzed all familial prostate cancer cases and the subset of aggressive cases. For the familial prostate cancer phenotype, 20 of the 25 SNPs were at least nominally associated with prostate cancer and 16 remained significant after multiple testing correction (p ≤ 1E ?3) occurring on chromosomal bands 6q25, 7p15, 8q24, 10q11, 11q13, 17q12, 17q24, and Xp11. For aggressive disease, 16 of the SNPs had at least nominal evidence and 8 were statistically significant including 2p15. The results indicate that the majority of common, low-risk alleles identified in GWAS studies for all prostate cancer also contribute risk for familial prostate cancer, and that some may contribute risk to aggressive disease.  相似文献   

17.
We report the development and validation of experimental methods, study designs, and analysis software for pooling-based genomewide association (GWA) studies that use high-throughput single-nucleotide-polymorphism (SNP) genotyping microarrays. We first describe a theoretical framework for establishing the effectiveness of pooling genomic DNA as a low-cost alternative to individually genotyping thousands of samples on high-density SNP microarrays. Next, we describe software called "GenePool," which directly analyzes SNP microarray probe intensity data and ranks SNPs by increased likelihood of being genetically associated with a trait or disorder. Finally, we apply these methods to experimental case-control data and demonstrate successful identification of published genetic susceptibility loci for a rare monogenic disease (sudden infant death with dysgenesis of the testes syndrome), a rare complex disease (progressive supranuclear palsy), and a common complex disease (Alzheimer disease) across multiple SNP genotyping platforms. On the basis of these theoretical calculations and their experimental validation, our results suggest that pooling-based GWA studies are a logical first step for determining whether major genetic associations exist in diseases with high heritability.  相似文献   

18.
In spite of the well-known clustering of multiple autoimmune disorders in families, analyses of specific shared genes and polymorphisms between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) have been limited. Therefore, we comprehensively tested autoimmune variants for association with SLE, aiming to identify pleiotropic genetic associations between these diseases. We compiled a list of 446 non–Major Histocompatibility Complex (MHC) variants identified in genome-wide association studies (GWAS) of populations of European ancestry across 17 ADs. We then tested these variants in our combined Caucasian SLE cohorts of 1,500 cases and 5,706 controls. We tested a subset of these polymorphisms in an independent Caucasian replication cohort of 2,085 SLE cases and 2,854 controls, allowing the computation of a meta-analysis between all cohorts. We have uncovered novel shared SLE loci that passed multiple comparisons adjustment, including the VTCN1 (rs12046117, P = 2.02×10−06) region. We observed that the loci shared among the most ADs include IL23R, OLIG3/TNFAIP3, and IL2RA. Given the lack of a universal autoimmune risk locus outside of the MHC and variable specificities for different diseases, our data suggests partial pleiotropy among ADs. Hierarchical clustering of ADs suggested that the most genetically related ADs appear to be type 1 diabetes with rheumatoid arthritis and Crohn''s disease with ulcerative colitis. These findings support a relatively distinct genetic susceptibility for SLE. For many of the shared GWAS autoimmune loci, we found no evidence for association with SLE, including IL23R. Also, several established SLE loci are apparently not associated with other ADs, including the ITGAM-ITGAX and TNFSF4 regions. This study represents the most comprehensive evaluation of shared autoimmune loci to date, supports a relatively distinct non–MHC genetic susceptibility for SLE, provides further evidence for previously and newly identified shared genes in SLE, and highlights the value of studies of potentially pleiotropic genes in autoimmune diseases.  相似文献   

19.
We conducted a comprehensive study of copy number variants (CNVs) well-tagged by SNPs (r(2)≥ 0.8) by analyzing their effect on gene expression and their association with disease susceptibility and other complex human traits. We tested whether these CNVs were more likely to be functional than frequency-matched SNPs as trait-associated loci or as expression quantitative trait loci (eQTLs) influencing phenotype by altering gene regulation. Our study found that CNV-tagging SNPs are significantly enriched for cis eQTLs; furthermore, we observed that trait associations from the NHGRI catalog show an overrepresentation of SNPs tagging CNVs relative to frequency-matched SNPs. We found that these SNPs tagging CNVs are more likely to affect multiple expression traits than frequency-matched variants. Given these findings on the functional relevance of CNVs, we created an online resource of expression-associated CNVs (eCNVs) using the most comprehensive population-based map of CNVs to inform future studies of complex traits. Although previous studies of common CNVs that can be typed on existing platforms and/or interrogated by SNPs in genome-wide association studies concluded that such CNVs appear unlikely to have a major role in the genetic basis of several complex diseases examined, our findings indicate that it would be premature to dismiss the possibility that even common CNVs may contribute to complex phenotypes and at least some common diseases.  相似文献   

20.
Psoriasis is a common skin disorder of multifactorial origin. Genomewide scans for disease susceptibility have repeatedly demonstrated the existence of a major locus, PSORS1 (psoriasis susceptibility 1), contained within the major histocompatibility complex (MHC), on chromosome 6p21. Subsequent refinement studies have highlighted linkage disequilibrium (LD) with psoriasis, along a 150-kb segment that includes at least three candidate genes (encoding human leukocyte antigen-C [HLA-C], alpha-helix-coiled-coil-rod homologue, and corneodesmosin), each of which has been shown to harbor disease-associated alleles. However, the boundaries of the minimal PSORS1 region remain poorly defined. Moreover, interpretations of allelic association with psoriasis are compounded by limited insight of LD conservation within MHC class I interval. To address these issues, we have pursued a high-resolution genetic characterization of the PSORS1 locus. We resequenced genomic segments along a 220-kb region at chromosome 6p21 and identified a total of 119 high-frequency SNPs. Using 59 SNPs (18 coding and 41 noncoding SNPs) whose position was representative of the overall marker distribution, we genotyped a data set of 171 independently ascertained parent-affected offspring trios. Family-based association analysis of this cohort highlighted two SNPs (n.7 and n.9) respectively lying 7 and 4 kb proximal to HLA-C. These markers generated highly significant evidence of disease association (P<10-9), several orders of magnitude greater than the observed significance displayed by any other SNP that has previously been associated with disease susceptibility. This observation was replicated in a Gujarati Indian case/control data set. Haplotype-based analysis detected overtransmission of a cluster of chromosomes, which probably originated by ancestral mutation of a common disease-bearing haplotype. The only markers exclusive to the overtransmitted chromosomes are SNPs n.7 and n.9, which define a 10-kb PSORS1 core risk haplotype. These data demonstrate the power of SNP haplotype-based association analyses and provide high-resolution dissection of genetic variation across the PSORS1 interval, the major susceptibility locus for psoriasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号