首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of blind individuals provides insight into the brain re-organization and behavioral compensations that occur following sensory deprivation. While behavioral studies have yielded conflicting results in terms of performance levels within the remaining senses, deafferentation of visual cortical areas through peripheral blindness results in clear neuroplastic changes. Most striking is the activation of occipital cortex in response to auditory and tactile stimulation. Indeed, parts of the "unimodal" visual cortex are recruited by other sensory modalities to process sensory information in a functionally relevant manner. In addition, a larger area of the sensorimotor cortex is devoted to the representation of the reading finger in blind Braille readers. The "visual" function of the deafferented occipital cortex is also altered, where transcranial magnetic stimulation-induced phosphenes can be elicited in only 20% of blind subjects. The neural mechanisms underlying these changes remain elusive but recent data showing rapid cross-modal plasticity in blindfolded, sighted subjects argue against the establishment of new connections to explain cross-modal interactions in the blind. Rather, latent pathways that participate in multisensory percepts in sighted subjects might be unmasked and may be potentiated in the event of complete loss of visual input. These issues have important implications for the development of visual prosthesis aimed at restoring some degree of vision in the blind.  相似文献   

2.
A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.  相似文献   

3.

Background

The loss of vision has been associated with enhanced performance in non-visual tasks such as tactile discrimination and sound localization. Current evidence suggests that these functional gains are linked to the recruitment of the occipital visual cortex for non-visual processing, but the neurophysiological mechanisms underlying these crossmodal changes remain uncertain. One possible explanation is that visual deprivation is associated with an unmasking of non-visual input into visual cortex.

Methodology/Principal Findings

We investigated the effect of sudden, complete and prolonged visual deprivation (five days) in normally sighted adult individuals while they were immersed in an intensive tactile training program. Following the five-day period, blindfolded subjects performed better on a Braille character discrimination task. In the blindfold group, serial fMRI scans revealed an increase in BOLD signal within the occipital cortex in response to tactile stimulation after five days of complete visual deprivation. This increase in signal was no longer present 24 hours after blindfold removal. Finally, reversible disruption of occipital cortex function on the fifth day (by repetitive transcranial magnetic stimulation; rTMS) impaired Braille character recognition ability in the blindfold group but not in non-blindfolded controls. This disruptive effect was no longer evident once the blindfold had been removed for 24 hours.

Conclusions/Significance

Overall, our findings suggest that sudden and complete visual deprivation in normally sighted individuals can lead to profound, but rapidly reversible, neuroplastic changes by which the occipital cortex becomes engaged in processing of non-visual information. The speed and dynamic nature of the observed changes suggests that normally inhibited or masked functions in the sighted are revealed by visual loss. The unmasking of pre-existing connections and shifts in connectivity represent rapid, early plastic changes, which presumably can lead, if sustained and reinforced, to slower developing, but more permanent structural changes, such as the establishment of new neural connections in the blind.  相似文献   

4.
The occipital cortex (OC) of early-blind humans is activated during various nonvisual perceptual and cognitive tasks, but little is known about its modular organization. Using functional MRI we tested whether processing of auditory versus tactile and spatial versus nonspatial information was dissociated in the OC of the early blind. No modality-specific OC activation was observed. However, the right middle occipital gyrus (MOG) showed a preference for spatial over nonspatial processing of both auditory and tactile stimuli. Furthermore, MOG activity was correlated with accuracy of individual sound localization performance. In sighted controls, most of extrastriate OC, including the MOG, was deactivated during auditory and tactile conditions, but the right MOG was more activated during spatial than nonspatial visual tasks. Thus, although the sensory modalities driving the neurons in the reorganized OC of blind individuals are altered, the functional specialization of extrastriate cortex is retained regardless of visual experience.  相似文献   

5.
We have addressed the role of occipital and somatosensory cortex in a tactile discrimination task. Sight-ed and congenitally blind subjects rated the roughness and distance spacing for a series of raised dot patterns. When judging roughness, intermediate dot spacings were perceived as being the most rough, while distance judgments generated a linear relation. Low-frequency rTMS applied to somatosensory cortex disrupted roughness without affecting distance judgments, while rTMS to occipital cortex disrupted distance but not roughness judgments. We also tested an early blind patient with bilateral occipital cortex damage. Her performance on the roughness determination task was normal; however, she was greatly impaired with distance judgments. The findings suggest a double-dissociation effect in which roughness and distance are primarily processed in somatosensory and occipital cortex, respectively. The differential effect of rTMS on task performance and corroborative clinical evidence suggest that occipital cortex is engaged in tactile tasks requiring fine spatial discrimination.  相似文献   

6.
We tested whether evening exposure to unilateral photic stimulation has repercussions on interhemispheric EEG asymmetries during wakefulness and later sleep. Because light exerts an alerting response in humans, which correlates with a decrease in waking EEG theta/alpha-activity and a reduction in sleep EEG delta activity, we hypothesized that EEG activity in these frequency bands show interhemispheric asymmetries after unilateral bright light (1,500 lux) exposure. A 2-h hemi-field light exposure acutely suppressed occipital EEG alpha activity in the ipsilateral hemisphere activated by light. Subjects felt more alert during bright light than dim light, an effect that was significantly more pronounced during activation of the right than the left visual cortex. During subsequent sleep, occipital EEG activity in the delta and theta range was significantly reduced after activation of the right visual cortex but not after stimulation of the left visual cortex. Furthermore, hemivisual field light exposure was able to shift the left predominance in occipital spindle EEG activity toward the stimulated hemisphere. Time course analysis revealed that this spindle shift remained significant during the first two sleep cycles. Our results reflect rather a hemispheric asymmetry in the alerting action of light than a use-dependent recovery function of sleep in response to the visual stimulation during prior waking. However, the observed shift in the spindle hemispheric dominance in the occipital cortex may still represent subtle local use-dependent recovery functions during sleep in a frequency range different from the delta range.  相似文献   

7.
8.
Visual experience plays an important role in the development of the visual cortex; however, recent functional imaging studies have shown that the functional organization is preserved in several higher-tier visual areas in congenitally blind subjects, indicating that maturation of visual areas depend unequally on visual experience. In this study, we aim to validate this hypothesis using a multimodality MRI approach. We found increased cortical thickness in the congenitally blind was present in the early visual areas and absent in the higher-tier ones, suggesting that the structural development of the visual cortex depends hierarchically on visual experience. In congenitally blind subjects, the decreased resting-state functional connectivity with the primary somatosensory cortex was more prominent in the early visual areas than in the higher-tier ones and were more pronounced in the ventral stream than in the dorsal one, suggesting that the development of functional organization of the visual cortex also depends differently on visual experience. Moreover, congenitally blind subjects showed normal or increased functional connectivity between ipsilateral higher-tier and early visual areas, suggesting an indirect corticocortical pathway through which somatosenroy information can reach the early visual areas. These findings support our hypothesis that the development of visual areas depends differently on visual experience.  相似文献   

9.
Objective: Eating behavior is influenced by internal and external factors. Vision is one part of the complex pattern of factors influencing the amount of food consumed during a meal. The aim of this study was to explore the impact of vision on the microstructure of eating behavior and the subjective motivation to eat. Research Methods and Procedures: Nine blind subjects and nine matched seeing control subjects consumed a standardized meal registered by VIKTOR, an eating monitor, measuring the microstructure of the eating behavior. The eating behavior of the control subjects was registered twice, with and without blindfold. Results: The eating behavior of the blind subjects did not differ from that of seeing control subjects. However, the eating behavior of seeing subjects eating with blindfold demonstrated a clear impact of vision on eating behavior. When blindfolded, subjects ate 22% less food (p < 0.05), had shorter meal durations (p < 0.05), and had less decelerated eating curves (p < 0.05). Despite a smaller amount of food consumed when blindfolded, the reported feeling of fullness was identical to that reported after the larger meal consumed without blindfold. Discussion: The importance of vision in regulating our eating behavior is further stressed in this study. Eating with a blindfold decreased the intake of food, without making subjects feel less full. Eating blindfolded, therefore, may force subjects to rely more on internal signals. These results might be used as an aid in the development of new treatment strategies for obese subjects.  相似文献   

10.
An event in one sensory modality can phase reset brain oscillations concerning another modality. In principle, this may result in stimulus-locked periodicity in behavioral performance. Here we considered this possible cross-modal impact of a sound for one of the best-characterized rhythms arising from the visual system, namely occipital alpha-oscillations (8-14 Hz). We presented brief sounds and concurrently recorded electroencephalography (EEG) and/or probed visual cortex excitability (phosphene perception) through occipital transcranial magnetic stimulation (TMS). In a first, TMS-only experiment, phosphene perception rate against time postsound showed a periodic pattern cycling at ~10 Hz phase-aligned to the sound. In a second, combined TMS-EEG experiment, TMS-trials reproduced the cyclical phosphene pattern and revealed a ~10 Hz pattern also for EEG-derived measures of occipital cortex reactivity to the TMS pulses. Crucially, EEG-data from intermingled trials without TMS established cross-modal phase-locking of occipitoparietal alpha oscillations. These independently recorded variables, i.e., occipital cortex excitability and reactivity and EEG phase dynamics, were significantly correlated. This shows that cross-modal phase locking of oscillatory visual cortex activity can arise in the human brain to affect perceptual and EEG measures of visual processing in a cyclical manner, consistent with occipital alpha oscillations underlying a rapid cycling of neural excitability in visual areas.  相似文献   

11.
Psychology and neuroscience have a long-standing tradition of studying blind individuals to investigate how visual experience shapes perception of the external world. Here, we study how blind people experience their own body by exposing them to a multisensory body illusion: the somatic rubber hand illusion. In this illusion, healthy blindfolded participants experience that they are touching their own right hand with their left index finger, when in fact they are touching a rubber hand with their left index finger while the experimenter touches their right hand in a synchronized manner (Ehrsson et al. 2005). We compared the strength of this illusion in a group of blind individuals (n = 10), all of whom had experienced severe visual impairment or complete blindness from birth, and a group of age-matched blindfolded sighted participants (n = 12). The illusion was quantified subjectively using questionnaires and behaviorally by asking participants to point to the felt location of the right hand. The results showed that the sighted participants experienced a strong illusion, whereas the blind participants experienced no illusion at all, a difference that was evident in both tests employed. A further experiment testing the participants' basic ability to localize the right hand in space without vision (proprioception) revealed no difference between the two groups. Taken together, these results suggest that blind individuals with impaired visual development have a more veridical percept of self-touch and a less flexible and dynamic representation of their own body in space compared to sighted individuals. We speculate that the multisensory brain systems that re-map somatosensory signals onto external reference frames are less developed in blind individuals and therefore do not allow efficient fusion of tactile and proprioceptive signals from the two upper limbs into a single illusory experience of self-touch as in sighted individuals.  相似文献   

12.
Over 150 years ago, E.H. Weber declared that experience showed that tactile acuity was not affected by viewing the stimulated body part. However, more recent investigations suggest that cross-modal links do exist between the senses. Viewing the stimulated body site improves performance on tactile discrimination and detection tasks and enhances tactile acuity. Here, we show that vision modulates somatosensory cortex activity, as measured by somatosensory event-related potentials (ERPs). This modulation is greatest when tactile stimulation is task relevant. Visual modulation is not present in the P50 component reflecting the primary afferent input to the cortex but appears in the subsequent N80 component, which has also been localized to SI, the primary somatosensory cortex. Furthermore, we replicate previous findings that noninformative vision improves spatial acuity. These results are consistent with a hypothesis that vision modulates cortical processing of tactile stimuli via back projections from multimodal cortical areas. Several neurophysiological studies suggest that primary and secondary somatosensory cortex (SI and SII, respectively) activity can be modulated by spatial and tactile attention and by visual cues. To our knowledge, this is the first demonstration of direct modulation of somatosensory cortex activity by a noninformative view of the stimulated body site with concomitant enhancement of tactile acuity in normal subjects.  相似文献   

13.
近期的脑成像研究在盲人等感官缺陷被试者身上发现了感觉替换现象,即传统上认为仅对单一感觉通道刺激反应的皮层区域也参与其他感觉通道的信息加工.类似的效应在感觉剥夺(蒙住眼睛)的明视人被试中也被观察到,提示脑内可能预存着多感觉交互作用的神经通路.通常认为,上述神经通路在常态的人脑中是以潜伏形式存在的,只有当感觉剥夺时才显露出来或得到加强.但是,感觉剥夺是否是该类神经通路发挥作用的必要条件,已有的研究尚缺乏确切的证据.采用统计力度较强的实验设计,给未蒙眼明视人被试听觉呈现一组名词,要求其对听到的每一个词语做出是人工物体还是自然物体的语义判断.对同步采集的功能磁共振信号进行统计分析,观察到视皮层脑区有显著激活.这些结果表明,跨感觉通道的神经通路在未实施感觉剥夺的条件下依然能够显示出来,因而在常态人脑中也不是完全以潜伏形式存在的.上述研究为建立多感觉交互作用神经机制的具体理论模型提供了一个约束条件.  相似文献   

14.
Bentley P  Husain M  Dolan RJ 《Neuron》2004,41(6):969-982
We compared behavioral and neural effects of cholinergic enhancement between spatial attention, spatial working memory (WM), and visual control tasks, using fMRI and the anticholinesterase physostigmine. Physostigmine speeded responses nonselectively but increased accuracy selectively for attention. Physostigmine also decreased activations to visual stimulation across all tasks within primary visual cortex, increased extrastriate occipital cortex activation selectively during maintained attention and WM encoding, and decreased parietal activation selectively during maintained attention. Finally, lateralization of occipital activation as a function of the visual hemifield toward which attention or memory was directed was decreased under physostigmine. In the case of attention, this effect correlated strongly with a decrease in a behavioral measure of selective spatial processing. Our results suggest that, while cholinergic enhancement facilitates visual attention by increasing activity in extrastriate cortex generally, it accomplishes this in a manner that reduces expectation-driven selective biasing of extrastriate cortex.  相似文献   

15.
Amedi A  Malach R  Pascual-Leone A 《Neuron》2005,48(5):859-872
Recent studies emphasize the overlap between the neural substrates of visual perception and visual imagery. However, the subjective experiences of imagining and seeing are clearly different. Here we demonstrate that deactivation of auditory cortex (and to some extent of somatosensory and subcortical visual structures) as measured by BOLD functional magnetic resonance imaging unequivocally differentiates visual imagery from visual perception. During visual imagery, auditory cortex deactivation negatively correlates with activation in visual cortex and with the score in the subjective vividness of visual imagery questionnaire (VVIQ). Perception of the world requires the merging of multisensory information so that, during seeing, information from other sensory systems modifies visual cortical activity and shapes experience. We suggest that pure visual imagery corresponds to the isolated activation of visual cortical areas with concurrent deactivation of "irrelevant" sensory processing that could disrupt the image created by our "mind's eye."  相似文献   

16.
Neuropsychological and imaging studies have shown that the left supramarginal gyrus (SMG) is specifically involved in processing spatial terms (e.g. above, left of), which locate places and objects in the world. The current fMRI study focused on the nature and specificity of representing spatial language in the left SMG by combining behavioral and neuronal activation data in blind and sighted individuals. Data from the blind provide an elegant way to test the supramodal representation hypothesis, i.e. abstract codes representing spatial relations yielding no activation differences between blind and sighted. Indeed, the left SMG was activated during spatial language processing in both blind and sighted individuals implying a supramodal representation of spatial and other dimensional relations which does not require visual experience to develop. However, in the absence of vision functional reorganization of the visual cortex is known to take place. An important consideration with respect to our finding is the amount of functional reorganization during language processing in our blind participants. Therefore, the participants also performed a verb generation task. We observed that only in the blind occipital areas were activated during covert language generation. Additionally, in the first task there was functional reorganization observed for processing language with a high linguistic load. As the visual cortex was not specifically active for spatial contents in the first task, and no reorganization was observed in the SMG, the latter finding further supports the notion that the left SMG is the main node for a supramodal representation of verbal spatial relations.  相似文献   

17.
The gold standard to acquire motor skills is through intensive training and practicing. Recent studies have demonstrated that behavioral gains can also be acquired by mere exposure to repetitive sensory stimulation to drive the plasticity processes. Single application of repetitive electric stimulation (rES) of the fingers has been shown to improve tactile perception in young adults as well as sensorimotor performance in healthy elderly individuals. The combination of repetitive motor training with a preceding rES has not been reported yet. In addition, the impact of such a training on somatosensory tactile and spatial sensitivity as well as on somatosensory cortical activation remains elusive. Therefore, we tested 15 right-handed participants who underwent repetitive electric stimulation of all finger tips of the left hand for 20 minutes prior to one hour of motor training of the left hand over the period of two weeks. Overall, participants substantially improved the motor performance of the left trained hand by 34%, but also showed a relevant transfer to the untrained right hand by 24%. Baseline ipsilateral activation fMRI-magnitude in BA 1 to sensory index finger stimulation predicted training outcome for somatosensory guided movements: those who showed higher ipsilateral activation were those who did profit less from training. Improvement of spatial tactile discrimination was positively associated with gains in pinch grip velocity. Overall, a combination of priming rES and repetitive motor training is capable to induce motor and somatosensory performance increase and representation changes in BA1 in healthy young subjects.  相似文献   

18.
Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing.  相似文献   

19.
Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged), the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life.  相似文献   

20.

Background

Recent neuroimaging studies have revealed that putatively unimodal regions of visual cortex can be activated during auditory tasks in sighted as well as in blind subjects. However, the task determinants and functional significance of auditory occipital activations (AOAs) remains unclear.

Methodology/Principal Findings

We examined AOAs in an intermodal selective attention task to distinguish whether they were stimulus-bound or recruited by higher-level cognitive operations associated with auditory attention. Cortical surface mapping showed that auditory occipital activations were localized to retinotopic visual cortex subserving the far peripheral visual field. AOAs depended strictly on the sustained engagement of auditory attention and were enhanced in more difficult listening conditions. In contrast, unattended sounds produced no AOAs regardless of their intensity, spatial location, or frequency.

Conclusions/Significance

Auditory attention, but not passive exposure to sounds, routinely activated peripheral regions of visual cortex when subjects attended to sound sources outside the visual field. Functional connections between auditory cortex and visual cortex subserving the peripheral visual field appear to underlie the generation of AOAs, which may reflect the priming of visual regions to process soon-to-appear objects associated with unseen sound sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号