首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A candidate vaccine (D1ME-VRP) expressing dengue virus type 1 premembrane and envelope proteins in a Venezuelan equine encephalitis (VEE) virus replicon particle (VRP) system was constructed and tested in conjunction with a plasmid DNA vaccine (D1ME-DNA) expressing identical dengue virus sequences. Cynomolgus macaques were vaccinated with three doses of DNA (DDD), three doses of VRP (VVV group), or a heterologous DNA prime-VRP boost regimen (DDV) using two doses of DNA vaccine and a third dose of VRP vaccine. Four weeks after the final immunization, the DDV group produced the highest dengue virus type 1-specific immunoglobulin G antibody responses and virus-neutralizing antibody titers. Moderate T-cell responses were demonstrated only in DDD- and DDV-vaccinated animals. When vaccinated animals were challenged with live virus, all vaccination regimens showed significant protection from viremia. DDV-immunized animals were completely protected from viremia (mean time of viremia = 0 days), whereas DDD- and VVV-vaccinated animals had mean times of viremia of 0.66 and 0.75 day, respectively, compared to 6.33 days for the control group of animals.  相似文献   

3.
CTL based vaccine strategies in the macaque model of AIDS have shown promise in slowing the progression to disease. However, rapid CTL escape viruses can emerge rendering such vaccination useless. We hypothesized that such escape is made more difficult if the immunizing CTL epitope falls within a region of the virus that has a high density of overlapping reading frames which encode several viral proteins. To test this hypothesis, we immunized macaques using a peptide-loaded dendritic cell approach employing epitopes in the second coding exon of SIV Tat which spans reading frames for both Env and Rev. We report here that autologous dendritic cells, loaded with SIV peptides from Tat, Rev, and Env, induced a distinct cellular immune response measurable ex vivo. However, conclusive in vivo control of a challenge inoculation of SIVmac239 was not observed suggesting that CTL epitopes within densely overlapping reading frames are also subject to escape mutations.  相似文献   

4.
An infectious, virulence-attenuated molecular clone of simian immunodeficiency virus (SIV), SIVMAC-1A11, was derived from an SIV isolate that causes fatal immunodeficiency in rhesus macaques. When inoculated intravenously in rhesus macaques, SIVMAC-1A11 induced transient viremia (1 to 6 weeks) without clinical disease and a persistent humoral antibody response. The antibodies were directed mainly against the viral envelope glycoproteins, as determined by immunoblots and virus neutralization. The potential of this virulence-attenuated virus to protect against intravenous challenge with a pathogenic SIVMAC strain was assessed. Five rhesus macaques were each given two intravenous inoculations with SIVMAC-1A11 7 months apart. Three of the five immunized monkeys and four naive control animals were then challenged with 100 to 1,000 100% animal infectious doses of pathogenic SIVMAC. All seven animals became persistently viremic following the challenge. Four of four unimmunized animals developed severe clinical signs of simian acquired immunodeficiency syndrome by 38 to 227 days after challenge and were euthanatized 91 to 260 days postchallenge. However, no signs of illness were seen in immunized monkeys until 267 to 304 days postchallenge, when two of three immunized animals developed mild thrombocytopenia and lymphopenia; one of these animals died with clinical signs of simian immunodeficiency disease at 445 days after challenge. The two SIVMAC-1A11-immunized monkeys that were not challenged were healthy and antibody positive 22 months after the initial immunization. Thus, although live SIVMAC-1A11 was immunogenic and did not induce any disease, it failed to protect rhesus macaques against infection with a moderately high dose of pathogenic virus. However, immunization prevented severe, early disease and prolonged the lives of monkeys subsequently infected with pathogenic SIV.  相似文献   

5.
Eight monkeys were immunized at 0, 4, 9, and 18 weeks with a total of 2 mg of formalin inactivated SIVmac vaccine with Ribi adjuvant. Two weeks after the last booster four immunized monkeys and two controls were challenged with 10 MID50 of live homologous virus SIVmac, and the remaining four vaccinated animals along with two controls were challenged with the heterologous SIVsm strain. All eight vaccinated monkeys resisted the virus challenge, whereas all controls became infected. Three months after the first challenge the monkeys were rechallenged with the same virus strain, without further boosting. Two of four vaccinated monkeys were still resistant to the homologous SIV strain, and three of four monkeys were resistant to the heterologous SIVsm strain. This study demonstrates vaccine induced cross-protection between SIV strains.  相似文献   

6.
Major histocompatibility complex (MHC) molecules expressed on the surface of human immunodeficiency virus (HIV) are potential targets for neutralizing antibodies. Since MHC molecules are polymorphic, nonself MHC can also be immunogenic. We have used combinations of novel recombinant HLA class I and II and HIV/simian immunodeficiency virus (SIV) antigens, all linked to dextran, to investigate whether they can elicit protective immunity against heterologous simian/human immunodeficiency virus (SHIV) challenge in rhesus macaques. Three groups of animals were immunized with HLA (group 1, n = 8), trimeric YU2 HIV type 1 (HIV-1) gp140 and SIV p27 (HIV/SIV antigens; group 2, n = 8), or HLA plus HIV/SIV antigens (group 3, n = 8), all with Hsp70 and TiterMax Gold adjuvant. Another group (group 4, n = 6) received the same vaccine as group 3 without TiterMax Gold. Two of eight macaques in group 3 were completely protected against intravenous challenge with 18 50% animal infective doses (AID50) of SHIV-SF162P4/C grown in human cells expressing HLA class I and II lineages represented in the vaccine, while the remaining six macaques showed decreased viral loads compared to those in unimmunized animals. Complement-dependent neutralizing activity in serum and high levels of anti-HLA antibodies were elicited in groups 1 and 3, and both were inversely correlated with the plasma viral load at 2 weeks postchallenge. Antibody-mediated protection was strongly supported by the fact that transfer of pooled serum from the two challenged but uninfected animals protected two naïve animals against repeated low-dose challenge with the same SHIV stock. This study demonstrates that immunization with recombinant HLA in combination with HIV-1 antigens might be developed into an alternative strategy for a future AIDS vaccine.  相似文献   

7.
A cynomolgus macaque (Macaca fascicularis) with a pre‐existing, undiagnosed, subclinical but severe cerebral hydrocephalus was enrolled in a study of long‐term immunogenicity of the IRES/CHIK vaccine. The animal began showing signs of neurological dysfunction post‐vaccination, which progressed and ultimately resulted in euthanasia. The underlying brain abnormality was revealed at necropsy and was subsequently investigated with gross and microscopic examination. This becomes the first reported case of an adverse event following administration of a live attenuated vaccine and suggests the possibility of an increased susceptibility risk of unwanted adverse outcome associated with vaccination in populations with pre‐existing conditions such as hydrocephalus.  相似文献   

8.
In order to test the hypothesis that CD8+ cytotoxic T lymphocytes mediate protection against acute superinfection, we depleted >99% of CD8+ lymphocytes in live attenuated simian immunodeficiency virus macC8 (SIVmacC8) vaccinees from the onset of vaccination, maintained that depletion for 20 days, and then challenged with pathogenic, wild-type SIVmacJ5. Vaccinees received 5 mg per kg of humanized anti-CD8 monoclonal antibody (MAb) 1 h before inoculation, followed by the same dose again on days 3, 7, 10, 13, and 17. On day 13, peripheral CD8+ T lymphocytes were >99% depleted in three out of four anti-CD8 MAb-treated vaccinees. At this time attenuated SIVmacC8 viral RNA loads in anti-CD8 MAb-treated vaccinees were significantly higher than control vaccinees treated contemporaneously with nonspecific human immunoglobulin. Lymphoid tissue CD8+ T lymphocyte depletion was >99% in three out of four anti-CD8 MAb-treated vaccinees on the day of wild-type SIVmacJ5 challenge. All four control vaccinees and three out of four anti-CD8 MAb-treated vaccinees were protected against detectable superinfection with wild-type SIVmacJ5. Although superinfection with wild-type SIVmacJ5 was detected at postmortem in a single anti-CD8 MAb-treated vaccinee, this did not correlate with the degree of preceding CD8+ T lymphocyte depletion. Clearance of attenuated SIVmacC8 viremia coincided with recovery of normal CD8+ T lymphocyte counts between days 48 and 76. These results support the view that cytotoxic T lymphocytes are important for host-mediated control of SIV primary viremia but do not indicate a central role in protection against acute superinfection conferred by inoculation with live attenuated SIV.  相似文献   

9.
A live attenuated Vibrio anguillarum vaccine was recently established in the laboratory that induced immunoprotection against vibriosis in zebrafish, Danio rerio. To improve immunogenicity, the effects of different booster vaccination regimens were investigated using bath‐vaccination in a zebrafish model. Zebrafish receiving booster doses at 2 weeks or at both 2 and 4 weeks after primary vaccination were better protected in comparison to fish that received a single vaccination. In addition, the booster vaccination induced a prolonged specific antibody response. No correlation between a weak specific antibody response and a strong protection was observed, indicating that the booster vaccination could enhance the affinity of Immunoglobulin M (IgM) rather than the amount. Moreover, changes in the immune‐related gene expression of the booster‐vaccinated group suggested that the booster enhanced the adaptive immune responses.  相似文献   

10.
11.
Eastern equine encephalitis virus (EEEV) is mosquito-borne virus that produces fatal encephalitis in humans. We recently conducted a first of its kind study to investigate EEEV clinical disease course following aerosol challenge in a cynomolgus macaque model utilizing the state-of-the-art telemetry to measure critical physiological parameters. Here, we report the results of a comprehensive pathology study of NHP tissues collected at euthanasia to gain insights into EEEV pathogenesis. Viral RNA and proteins as well as microscopic lesions were absent in the visceral organs. In contrast, viral RNA and proteins were readily detected throughout the brain including autonomic nervous system (ANS) control centers and spinal cord. However, despite presence of viral RNA and proteins, majority of the brain and spinal cord tissues exhibited minimal or no microscopic lesions. The virus tropism was restricted primarily to neurons, and virus particles (~61–68 nm) were present within axons of neurons and throughout the extracellular spaces. However, active virus replication was absent or minimal in majority of the brain and was limited to regions proximal to the olfactory tract. These data suggest that EEEV initially replicates in/near the olfactory bulb following aerosol challenge and is rapidly transported to distal regions of the brain by exploiting the neuronal axonal transport system to facilitate neuron-to-neuron spread. Once within the brain, the virus gains access to the ANS control centers likely leading to disruption and/or dysregulation of critical physiological parameters to produce severe disease. Moreover, the absence of microscopic lesions strongly suggests that the underlying mechanism of EEEV pathogenesis is due to neuronal dysfunction rather than neuronal death. This study is the first comprehensive investigation into EEEV pathology in a NHP model and will provide significant insights into the evaluation of countermeasure.  相似文献   

12.
Costimulatory molecules play a central role in the development of cellular immunity. Understanding how costimulatory pathways can be directed to positively influence the immune response may be critical for the generation of an effective HIV vaccine. Here, we evaluated the ability of intravenous administration of a blocking monoclonal antibody (mAb) directed against the negative costimulatory molecule CTLA-4, and an agonist mAb directed against the positive costimulatory molecule 4-1BB, either alone or in combination, to augment intramuscular SIV DNA immunizations. We then tested the ability these of these responses to impact a high-dose SIVmac251 challenge. Following immunization, the groups infused with the anti-4-1BB mAb exhibited enhanced IFN-γ responses compared to the DNA vaccine only group. Interestingly, although CTLA-4 blockade alone did not enhance IFN-γ responses it did increase the proliferative capacity of the CD4+ and CD8+ T cells. The combination of both mAbs enhanced the magnitude of the polyfunctional CD8+ T cell response. Following challenge, the group that received both mAbs exhibited a significant, ∼2.0 log, decrease in plasma viral load compared to the naïve group the included complete suppression of viral load in some animals. Furthermore, the use of the CTLA-4 blocking antibody resulted in significantly higher viral loads during chronic infection compared to animals that received the 4-1BB mAb, likely due to the higher CD4+ T cell proliferative responses which were driven by this adjuvant following immunization. These novel studies show that these adjuvants induce differential modulation of immune responses, which have dramatically different consequences for control of SIV replication, suggesting important implications for HIV vaccine development.  相似文献   

13.
A limited period of chemotherapy during primary immunodeficiency virus infection might provide a long-term clinical benefit even if treatment is initiated at a time point when virus is already detectable in plasma. To evaluate this strategy, we infected rhesus macaques with the pathogenic simian/human immunodeficiency virus RT-SHIV and treated them with the antiretroviral drug (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) for 8 weeks starting 7 or 14 days postinfection. PMPA treatment suppressed viral replication efficiently in all of the monkeys. After chemotherapy ended, virus replication rebounded and viral RNA in plasma reached levels comparable to that of the controls in four of the six monkeys. However, in the other two animals, virus loads peaked only moderately after withdrawal of the drug and then declined to low or even undetectable levels. These low levels of viremia remained stable for at least 31 weeks after cessation of therapy. At this time point, these two monkeys were challenged with SIV(8980) to evaluate whether the host responses which were able to keep RT-SHIV replication under control were also sufficient to protect against infection with a highly pathogenic heterologous virus. Both monkeys proved to be protected against the heterologous virus. In one of the two animals, low levels of SIV(8980) replication were detected. Thus, by chemotherapy during the acute phase of pathogenic virus replication, we could achieve not only persistent virus load suppression in two out of six monkeys but also protection from subsequent heterologous challenge. By this chemotherapeutic attenuation, the replication kinetics of attenuated viruses could be mimicked and a vaccination effect similar to that induced by live attenuated simian immunodeficiency virus vaccines was achieved.  相似文献   

14.
Rhesus macaques immunized with simian immunodeficiency virus SIVmac239Deltanef but not protected from SIVmac251 challenge were studied to determine the genetic and biological characteristics of the breakthrough viruses. Assessment of SIV genetic diversity (env V1-V2) revealed a reduction in the number of viral species in the immunized, unprotected macaques, compared to the number in nonimmunized controls. However, no evidence for selection of a specific V1-V2 genotype was observed, and biologically cloned isolates from the animals with breakthrough virus were similar with respect to replication kinetics and coreceptor use in vitro.  相似文献   

15.
16.
Most alphaviruses are mosquito-borne and can cause severe disease in humans and domesticated animals. In North America, eastern equine encephalitis virus (EEEV) is an important human pathogen with case fatality rates of 30–90%. Currently, there are no therapeutics or vaccines to treat and/or prevent human infection. One critical impediment in countermeasure development is the lack of insight into clinically relevant parameters in a susceptible animal model. This study examined the disease course of EEEV in a cynomolgus macaque model utilizing advanced telemetry technology to continuously and simultaneously measure temperature, respiration, activity, heart rate, blood pressure, electrocardiogram (ECG), and electroencephalography (EEG) following an aerosol challenge at 7.0 log10 PFU. Following challenge, all parameters were rapidly and substantially altered with peak alterations from baseline ranged as follows: temperature (+3.0–4.2°C), respiration rate (+56–128%), activity (-15-76% daytime and +5–22% nighttime), heart rate (+67–190%), systolic (+44–67%) and diastolic blood pressure (+45–80%). Cardiac abnormalities comprised of alterations in QRS and PR duration, QTc Bazett, T wave morphology, amplitude of the QRS complex, and sinoatrial arrest. An unexpected finding of the study was the first documented evidence of a critical cardiac event as an immediate cause of euthanasia in one NHP. All brain waves were rapidly (~12–24 hpi) and profoundly altered with increases of up to 6,800% and severe diffuse slowing of all waves with decreases of ~99%. Lastly, all NHPs exhibited disruption of the circadian rhythm, sleep, and food/fluid intake. Accordingly, all NHPs met the euthanasia criteria by ~106–140 hpi. This is the first of its kind study utilizing state of the art telemetry to investigate multiple clinical parameters relevant to human EEEV infection in a susceptible cynomolgus macaque model. The study provides critical insights into EEEV pathogenesis and the parameters identified will improve animal model development to facilitate rapid evaluation of vaccines and therapeutics.  相似文献   

17.

Background

Trypanosoma cruzi is a protozoan parasite that causes severe disease in millions of habitants of developing countries. Currently there is no vaccine to prevent this disease and the available drugs have the consequences of side effects. Live vaccines are likely to be more effective in inducing protection than recombinant proteins or DNA vaccines; however, safety problems associated to their use have been pointed out. In recent years, increasing knowledge on the molecular genetics of Trypanosomes has allowed the identification and elimination of genes that may be necessary for parasite infectivity and survival. In this sense, targeted deletion or disruption of specific genes in the parasite genome may protect against such reversion to virulent genotypes.

Methods and Findings

By targeted gene disruption we generated monoallelic mutant parasites for the dhfr-ts gene in a T. cruzi strain that has been shown to be naturally attenuated. In comparison to T. cruzi wild type epimastigotes, impairment in growth of dhfr-ts+/− mutant parasites was observed and mutant clones displayed decreased virulence in mice. Also, a lower number of T. cruzi-specific CD8+ T cells, in comparison to those induced by wild type parasites, was detected in mice infected with mutant parasites. However, no remarkable differences in the protective effect of TCC wild type versus TCC mutant parasites were observed. Mice challenged with virulent parasites a year after the original infection with the mutant parasites still displayed a significant control over the secondary infection.

Conclusion

This study indicates that it is possible to generate genetically attenuated T. cruzi parasites able to confer protection against further T. cruzi infections.  相似文献   

18.
Previously, Ab-dependent cellular cytotoxicity (ADCC) was significantly correlated with reduced acute viremia upon intrarectal SIVmac251 challenge of immunized rhesus macaques. To directly assess ADCC protective efficacy, six neonatal macaques were infused s.c. with immune IgG (220 mg/kg) purified from the immunized animals and positive for ADCC and Ab-dependent cell-mediated viral inhibition (ADCVI) activities. Six neonates received control IgG. The neonates were challenged twice orally with 10(5) 50% inhibiting tissue culture-infective dose of SIVmac251 2 days post-IgG infusion. At challenge, plasma of neonates that received immune IgG did not neutralize SIVmac251 but had geometric mean ADCC titers of 48,130 and 232,850 against SIVmac251 -infected and gp120-coated targets, respectively. Peak ADCVI activity varied from 62 to 81%. ADCC activity declined with the 2-wk IgG half-life but was boosted at wk 4, together with de novo ADCC-mediating Abs in controls, by postchallenge viremia. ADCVI activity was similarly induced. No protection, assessed by viral burdens, CD4 counts, and time to euthanasia was observed. Possible factors contributing to the discrepancy between the previous correlation and lack of protection here include: the high oral challenge dose compared with the 400-fold lower intrarectal dose; the challenge route with regard to viral dissemination and distribution of infused IgG; insufficient NK effector activity and/or poor functionality in newborns; insufficient immune IgG; and the possibility that the previous correlation of ADCC with protection was augmented by cellular immune responses also present at challenge. Future studies should explore additional challenge routes in juvenile macaques using higher amounts of potent IgG preparations.  相似文献   

19.
The disease caused by Taenia solium is progressively being recognized as a growing global threat for public human health and pig husbandry that requires the development of effective control measures. A central participant in the taeniasis/cysticercosis transmission network is the human carrier of the adult tapeworm because of its great potential in spreading the infection. Herein, evidence is presented that a primary infection of golden hamsters with orally administered T. solium cysticerci improved the host's resistance against a secondary infection. Likewise, previous vaccination increased the hamster's resistance. Similar high levels of protection (> 78%) were induced by systemic or oral vaccination with the S3Pvac anticysticercosis synthetic peptide vaccine or the highly immunogenic recombinant chimera based on the protective peptide KETc1 bound to Brucella spp. lumazine synthase (BLS-KETc1). Increased resistance after primo-infection and vaccination possibly results from changes in the immune conditions prevailing in the host's intestine. The contribution to protection from the KETc1 and BLS epitopes in a chimeric vaccine is under study. Preventive vaccination of definitive hosts of T. solium against the tapeworm, the most relevant step in the taeniasis/cysticercosis transmission, may greatly impact the dynamics of endemic disease and has not been studied or tried previously.  相似文献   

20.
Most HIV infections result from heterosexual transmission to women. Because cellular immunity plays a key role in the control of the infection, we sought to strengthen cellular immune responses in vaginal tissue. We explored a novel prime-boost protocol that used two live mucosal agents that trigger different pathways of innate immunity and induce strong cellular immunity. Adenovirus serotype 5 (Ad5) has frequently been used as a boost for DNA vaccines. In this study we used attenuated, recombinant L. monocytogenes-gag (rLm-gag) to prime mice by various mucosal routes-oral, intrarectal, and intravaginally (ivag)-followed by a systemic or mucosal boost with replication-defective rAd5-gag. Mice primed with a single administration of rLm-gag by any route and then boosted with rAd5-gag intramuscularly exhibited abundant Gag-specific CD8 T cells in spleen and vaginal lamina propria. Conversely, when boosted with rAd5-gag ivag, the immune response was reoriented toward the vagina with strikingly higher CD8 T cell responses in that tissue, particularly after ivag immunization by both vectors (ivag/ivag). Five weeks to 5 mo later, ivag/ivag-immunized mice continued to show high levels of effector memory CD8 T cells in vagina, while the pool of memory T cells in spleen assumed a progressively more central memory T cell phenotype. The memory mice showed high in vivo CTL activity in vagina, a strong recall response, and robust protection after ivag vaccinia-gag challenge, suggesting that this prime-boost strategy can induce strong cellular immunity, especially in vaginal tissues, and might be able to block the heterosexual transmission of HIV-1 at the vaginal mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号