共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang Suijun Yang Zhen Gao Ying Wang Yanfang 《Biochemical and biophysical research communications》2014
Glucose-stimulated insulin secretion (GSIS) is essential for the control of metabolic fuel homeostasis and its impairment is a key element in the failure of β-cells in type 2 diabetes. Trans-caryophyllene (TC), an important constituent of the essential oil of several species of plants, has been reported to activate the type 2 cannabinoid receptor (CB2R). The effects of TC on GSIS are still unknown. Our results demonstrate that administration of TC in MIN6 cells promotes GSIS in a dose dependent manner. However, inhibition of CB2R by a specific inhibitor or specific RNA interference abolished the effects of TC on GSIS, which suggests that the effects of TC on GSIS are dependent on activation of CB2R. Further study demonstrated that treatment with TC leads to the activation of small G protein Arf6 as well as Rac1 and Cdc42. Importantly, Arf6 silencing abolished the effects of TC on GSIS, which suggests that Arf6 participates in mediating the effects of TC on GSIS. We conclude from these data that TC has a novel role in regulating GSIS in pancreatic β-cells. 相似文献
2.
3.
Kawaguchi M Minami K Nagashima K Seino S 《The Journal of biological chemistry》2006,281(19):13015-13020
Insulin secretion from pancreatic beta-cells occurs by sequential cellular processes, including glucose metabolism, electrical activity, Ca2+ entry, and regulated exocytosis. Abnormalities in any of these functions can impair insulin secretion. In the present study, we demonstrate that inhibition of proteasome activity severely reduces insulin secretion in the mouse pancreatic beta-cell line MIN6-m9. Although no significant effects on glucose metabolism including ATP production were found in the presence of proteasome inhibitors, both glucose- and KCl-induced Ca2+ entry were drastically reduced. As Ca2+-ionophore-induced insulin secretion was unaffected by proteasome inhibition, a defect in Ca2+ entry through voltage-dependent calcium channels (VDCCs) is the likely cause of the impaired insulin secretion. We found that the pore-forming alpha-subunit of VDCCs undergoes ubiquitination, which does not decrease but slightly increases expression of the alpha-subunit protein at the plasma membrane. However, electrophysiological analysis revealed that treatment with proteasome inhibitors results in a severe reduction in VDCC activity in MIN6-m9 cells, indicating that VDCC function is suppressed by proteasome inhibition. Furthermore, insulin secretion in isolated mouse pancreatic islets was also decreased by proteasome inhibition. These results demonstrate that the ubiquitin-proteasome system plays a critical role in insulin secretion by maintaining normal function of VDCCs. 相似文献
4.
Does insulin play a role in the regulation of its own secretion? 总被引:1,自引:0,他引:1
5.
Mason DJ 《Journal of musculoskeletal & neuronal interactions》2004,4(2):128-131
The amino acid L-glutamate mediates signals at excitatory synapses in the CNS where its effects are controlled by co-ordinated activities of various types of glutamate receptor and transporter. This signalling mechanism has proved to be far more ubiquitous with many different cell types responding to glutamate. The glutamate transporter GLAST-1 was the first component of this pathway identified in bone where its expression was found to be mechanoresponsive in osteocytes. There is now a wealth of evidence supporting a role for this signalling mechanism in bone. Osteoblasts can release glutamate in a regulated manner and express functional glutamate receptors that influence their differentiation and osteogenic activity. Likewise, osteoclasts express functional glutamate receptors that influence their bone resorbing capacity. This article considers the various functions of glutamate transporters in this signalling pathway, and the evidence supporting an important role of glutamate signalling in regulating bone cell activities. 相似文献
6.
A signaling role of glutamine in insulin secretion 总被引:7,自引:0,他引:7
Li C Buettger C Kwagh J Matter A Daikhin Y Nissim IB Collins HW Yudkoff M Stanley CA Matschinsky FM 《The Journal of biological chemistry》2004,279(14):13393-13401
Children with hypoglycemia due to recessive loss of function mutations of the beta-cell ATP-sensitive potassium (K(ATP)) channel can develop hypoglycemia in response to protein feeding. We hypothesized that amino acids might stimulate insulin secretion by unknown mechanisms, because the K(ATP) channel-dependent pathway of insulin secretion is defective. We therefore investigated the effects of amino acids on insulin secretion and intracellular calcium in islets from normal and sulfonylurea receptor 1 knockout (SUR1-/-) mice. Even though SUR1-/- mice are euglycemic, their islets are considered a suitable model for studies of the human genetic defect. SUR1-/- islets, but not normal islets, released insulin in response to an amino acid mixture ramp. This response to amino acids was decreased by 60% when glutamine was omitted. Insulin release by SUR1-/- islets was also stimulated by a ramp of glutamine alone. Glutamine was more potent than leucine or dimethyl glutamate. Basal intracellular calcium was elevated in SUR1-/- islets and was increased further by glutamine. In normal islets, methionine sulfoximine, a glutamine synthetase inhibitor, suppressed insulin release in response to a glucose ramp. This inhibition was reversed by glutamine or by 6-diazo-5-oxo-l-norleucine, a non-metabolizable glutamine analogue. High glucose doubled glutamine levels of islets. Methionine sulfoximine inhibition of glucose stimulated insulin secretion was associated with accumulation of glutamate and aspartate. We hypothesize that glutamine plays a critical role as a signaling molecule in amino acid- and glucose-stimulated insulin secretion, and that beta-cell depolarization and subsequent intracellular calcium elevation are required for this glutamine effect to occur. 相似文献
7.
8.
Role of glutamate transporters in the regulation of glutathione levels in human macrophages 总被引:3,自引:0,他引:3
Rimaniol Anne-Cecile; Mialocq Patricia; Clayette Pascal; Dormont Dominique; Gras Gabriel 《American journal of physiology. Cell physiology》2001,281(6):C1964
Cysteine is the limiting precursor forglutathione synthesis. Because of its low bioavailability, cysteine isgenerally produced from cystine, which may be taken up through twodifferent transporters. The cystine/glutamate antiporter(x system) transports extracellular cystine inexchange for intracellular glutamate. The XAG transportsystem takes up extracellular cystine, glutamate, and aspartate. Bothare sensitive to competition between cystine and glutamate, and excessextracellular glutamate thus inhibits glutathione synthesis, anonexcitotoxic mechanism for glutamate toxicity. We demonstratedpreviously that human macrophages express the glutamate transportersexcitatory amino acid transporter (EAAT)1 and EAAT2 (which do nottransport cystine, X system) and overcomecompetition for the use of cystine transporters. We now showthat macrophages take up cystine through the x andnot the XAG system. We also found that glutamate, although competing with cystine uptake, dose-dependently increases glutathione synthesis. We used inhibitors to demonstrate that this increase ismediated by EAATs. EAAT expression in macrophages thus leads toglutamate-dependent enhancement of glutathione synthesis by providingintracellular glutamate for direct insertion in glutathione and alsofor fueling the intracellular pool of glutamate andtrans-stimulating the cystine/glutamate antiporter. 相似文献
9.
10.
The aerial surfaces of plants are enveloped by a waxy cuticle, which among other functions serves as a barrier to limit non-stomatal water loss and defend against pathogens. The cuticle is a complex three-dimensional structure composed of cutin (a lipid polyester matrix) and waxes (very long chain fatty acid derivatives), which are embedded within and layered on top of the cutin matrix. Biosynthesis of cuticular lipids is believed to take place solely within aerial epidermal cells. Once synthesized, both the waxes and the cutin precursors must leave the cytoplasm, pass through the hydrophilic apoplastic space, and finally assemble to form the cuticle. These processes of secretion and assembly are essentially unknown. Initial steps toward our understanding of these processes were the characterization of CER5/ABCG12/WBC12 and more recently ABCG11/WBC11, a pair of ABC transporters required for cuticular lipid secretion. ABCG12 is involved in wax secretion, as mutations in this gene result in a lower surface-load of wax and a concomitant accumulation of lipidic inclusions within the epidermal cell cytoplasm. Mutations in ABCG11 result in a similar wax phenotype as cer5 and similar cytoplasmic inclusions. In contrast to cer5, however, abcg11 mutants also show significantly reduced cutin, post-genital organ fusions, and reduced growth and fertility. Thus, for the first time, a transporter is implicated in cutin accumulation. This review will discuss the secretion of cuticular lipids, focusing on ABCG12, ABCG11 and the potential involvement of other ABC transporters in the ABCG subfamily. 相似文献
11.
A possible role of adenylate cyclase in the longterm dietary regulation of insulin secretion from rat islets of Langerhans 下载免费PDF全文
1. Adenylate cyclase activity and patterns of insulin release in response to various concentrations of glucose were determined in islets of Langerhans isolated from starving, fed, or glucose-loaded rats. 2. Basal and glucagon-stimulated activities of adenylate cyclase were lower in islets from starved than from fed rats. The minimum glucose concentration required for stimulation of insulin secretion was higher, whereas the maximum secretory response to glucose was lower, in islets from starved than from fed rats. 3. Adenylate cyclase activity in islets of Langerhans obtained from fed rats loaded with glucose by intermittent intravenous or intraperitoneal injections over 5h was significantly higher than that seen in islets from normal fed rats. Islets obtained from glucose-loaded rats required a lower glucose concentration for stimulation of insulin secretion and attained a higher maximal response to glucose stimulation than those derived from fed rats. 4. Incubation in vitro of islets isolated from normal fed rats, for periods of 1 to 24h in the presence of high concentrations of glucose resulted in an activation of adenylate cyclase that occurred progressively from 2 to 7h and which was maintained during 24h of incubation. The increase of adenylate cyclase activity in isolated islets incubated for 4h in the presence of glucose was not prevented by addition of cycloheximide or actinomycin D. Galactose or 2-deoxyglucose was ineffective in increasing adenylate cyclase activity, and pyruvate (20mm) was less effective than glucose. 5. It is suggested that glucose or a glucose metabolite may exert long-term effects on islet cell adenylate cyclase. 相似文献
12.
The incidence of type 2 diabetes mellitus (T2DM) is rapidly increasing worldwide with significant consequences on individual quality of life as well as economic burden on states' healthcare costs. While origins of the pathogenesis of T2DM are poorly understood, an early defect in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is considered a hallmark of T2DM 1.Upon a glucose stimulus, insulin is secreted in a biphasic manner with an early first-phase burst of insulin, which is followed by a second, more sustained phase of insulin output 2. First phase insulin secretion is diminished early in T2DM as well is in subjects who are at risk of developing T2DM 3 4 5 6.An effective treatment of T2DM with incretin hormone glucagon-like peptide-1 (GLP-1) or its long acting peptide analogue exendin-4 (E4), restores first-phase and augments second-phase glucose stimulated insulin secretion. This effect of incretin action occurs within minutes of GLP-1/E4 infusion in T2DM humans. An additional important consideration is that incretin hormones augment GSIS only above a certain glucose threshold, which is slightly above the normal glucose range. This ensures that incretin hormones stimulate GSIS only when glucose levels are high, while they are ineffective when insulin levels are below a certain threshold 7 8.Activation of the GLP-1 receptor, which is highly expressed on pancreatic β-cells, stimulates 2 -distinct intracellular signaling pathways: a) the cAMP-protein kinase A branch and b) the cAMP-EPAC2 (EPAC=exchange protein activated by cAMP) branch. While the EPAC2 branch is considered to mediate GLP-1 effects on first-phase GSIS, the PKA branch is necessary for the former branch to be active 9 10. However, how these 2 branches interplay and converge and how their effects on insulin secretion and insulin vesicle exocytosis are coordinated is poorly understood.Thus, at the outset of our studies we have a poorly understood intracellular interplay of cAMP-dependent signaling pathways, which - when stimulated - restore glucose-dependent first phase and augment second phase insulin secretion in the ailing β-cells of T2DM. 相似文献
13.
The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention 总被引:4,自引:1,他引:3
Extracellular concentrations of the predominant excitatory neurotransmitter, glutamate, and related excitatory amino acids are maintained at relatively low levels to ensure an appropriate signal-to-noise ratio and to prevent excessive activation of glutamate receptors that can result in cell death. The latter phenomenon is known as 'excitotoxicity' and has been associated with a wide range of acute and chronic neurodegenerative disorders, as well as disorders that result in the loss of non-neural cells such as oligodendroglia in multiple sclerosis. Unfortunately clinical trials with glutamate receptor antagonists that would logically seem to prevent the effects of excessive receptor activation have been associated with untoward side effects or little clinical benefit. In the mammalian CNS, the extracellular concentrations of glutamate are controlled by two types of transporters; these include a family of Na(+)-dependent transporters and a cystine-glutamate exchange process, referred to as system X(c)(-). In this review, we will focus primarily on the Na(+)-dependent transporters. A brief introduction to glutamate as a neurotransmitter will be followed by an overview of the properties of these transporters, including a summary of the presumed physiologic mechanisms that regulate these transporters. Many studies have provided compelling evidence that impairing the function of these transporters can increase the sensitivity of tissue to deleterious effects of aberrant activation of glutamate receptors. Over the last decade, it has become clear that many neurodegenerative disorders are associated with a change in localization and/or expression of some of the subtypes of these transporters. This would suggest that therapies directed toward enhancing transporter expression might be beneficial. However, there is also evidence that glutamate transporters might increase the susceptibility of tissue to the consequences of insults that result in a collapse of the electrochemical gradients required for normal function such as stroke. In spite of the potential adverse effects of upregulation of glutamate transporters, there is recent evidence that upregulation of one of the glutamate transporters, GLT-1 (also called EAAT2), with beta-lactam antibiotics attenuates the damage observed in models of both acute and chronic neurodegenerative disorders. While it seems somewhat unlikely that antibiotics specifically target GLT-1 expression, these studies identify a potential strategy to limit excitotoxicity. If successful, this type of approach could have widespread utility given the large number of neurodegenerative diseases associated with decreases in transporter expression and excitotoxicity. However, given the massive effort directed at developing glutamate receptor agents during the 1990s and the relatively modest advances to date, one wonders if we will maintain the patience needed to carefully understand the glutamatergic system so that it will be successfully targeted in the future. 相似文献
14.
15.
Newsholme P Krause M 《The Clinical biochemist. Reviews / Australian Association of Clinical Biochemists》2012,33(2):35-47
Pancreatic β-cells are exquisitely organised to continually monitor and respond to dietary nutrients, under the modulation of additional neurohormonal signals, in order to secrete insulin to best meet the needs of the organism. β-cell nutrient sensing requires complex mechanisms of metabolic activation, resulting in production of stimulus-secretion coupling signals that promote insulin biosynthesis and release. The primary stimulus for insulin secretion is an elevation in blood glucose concentration and β-cells are particularly responsive to this important nutrient secretagogue via the tight regulation of glycolytic and mitochondrial pathways at steps such as glucokinase, pyruvate dehydrogenase, pyruvate carboxylase, glutamate dehydrogenase and mitochondrial redoxshuttles. With respect to development of type-2 diabetes (T2DM), it is important to consider individual effects of different classes of nutrient or other physiological or pharmacological agents on metabolism and insulin secretion and to also acknowledge and examine the interplay between glucose metabolism and that of the two other primary nutrient classes, amino acids (such as arginine and glutamine) and fatty acids. It is the mixed nutrient sensing and outputs of glucose, amino and fatty acid metabolism that generate the metabolic coupling factors (MCFs) essential for signalling for insulin exocytosis. Primary MCFs in the β-cell include ATP, NADPH, glutamate, long chain acyl coenzyme A and diacylglycerol. It is the failure to generate MCFs in a coordinated manner and at sufficient levels that underlies the failure of β-cell secretion during the pathogenesis of T2DM. 相似文献
16.
A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells 总被引:6,自引:0,他引:6
B E Corkey M C Glennon K S Chen J T Deeney F M Matschinsky M Prentki 《The Journal of biological chemistry》1989,264(36):21608-21612
To gain insight into the relationship between acyl coenzyme A (CoA) esters and glucose-induced insulin release, acyl-CoA profiles were determined in clonal pancreatic beta-cells (HIT). A high sensitivity high performance liquid chromatography method was used to measure malonyl, succinyl, beta-hydroxy beta-methylglutaryl and acetyl-CoA esters and free CoASH. Malonyl-CoA content increased more than 3-fold following exposure of HIT cells to 10 mM glucose. The rise in malonyl-CoA, which preceded insulin secretion, was evident 2 min after exposure to glucose and was sustained for at least 30 min. The increase in malonyl-CoA was associated with inhibition of fatty acid oxidation, increased de novo lipid synthesis and a rise in diacylglycerol content. Succinyl-CoA levels, which may reflect anaplerotic influx into the citric acid cycle, were elevated in the presence of glucose. The concentration of acetyl-CoA and the ratio of free CoASH to acetyl-CoA was unchanged. The data are consistent with a metabolic model in which malonyl-CoA mediates the switch from fatty acid catabolism to lipid synthesis during glucose stimulation of beta-cells. We suggest that these changes in lipid metabolism, by leading to increased diacylglycerol synthesis or protein acylation could play a pivotal role in the regulation of the sustained phase of insulin secretion. 相似文献
17.
18.
19.
Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury 总被引:16,自引:0,他引:16
Glutamate excitotoxicity plays an important role in the development of secondary injuries that occur following traumatic brain injury (TBI), and contributes significantly to expansion of the total volume of injury. Acute increases in extracellular glutamate levels have been detected in both experimental brain trauma models and in human patients, and can lead to over-stimulation of glutamate receptors, resulting in a cascade of excitotoxic-related mechanisms culminating in neuronal damage. These elevated levels of glutamate can be effectively controlled by the astrocytic glutamate transporters GLAST (EAAT1) and GLT-1 (EAAT2). However, evidence indicate these transporters and splice variant are downregulated shortly following the insult, which then precipitates glutamate-mediated excitotoxic conditions. Lack of success with glutamate receptor antagonists as a potential source of clinical intervention treatment following TBI has resulted in the necessity for a better understanding of the mechanisms that underlie the process of excitotoxicity, including the function and regulation of glutamate transporters. Such new insight should improve the likelihood of development of novel avenues for therapeutic intervention following TBI. 相似文献
20.
Anno T Uehara S Katagiri H Ohta Y Ueda K Mizuguchi H Moriyama Y Oka Y Tanizawa Y 《American journal of physiology. Endocrinology and metabolism》2004,286(2):E280-E285
Glutamate dehydrogenase (GDH) catalyzes reversible oxidative deamination of l-glutamate to alpha-ketoglutarate. Enzyme activity is regulated by several allosteric effectors. Recognition of a new form of hyperinsulinemic hypoglycemia, hyperinsulinism/hyperammonemia (HI/HA) syndrome, which is caused by gain-of-function mutations in GDH, highlighted the importance of GDH in glucose homeostasis. GDH266C is a constitutively activated mutant enzyme we identified in a patient with HI/HA syndrome. By overexpressing GDH266C in MIN6 mouse insulinoma cells, we previously demonstrated unregulated elevation of GDH activity to render the cells responsive to glutamine in insulin secretion. Interestingly, at low glucose concentrations, basal insulin secretion was exaggerated in such cells. Herein, to clarify the role of GDH in the regulation of insulin secretion, we studied cellular glutamate metabolism using MIN6 cells overexpressing GDH266C (MIN6-GDH266C). Glutamine-stimulated insulin secretion was associated with increased glutamine oxidation and decreased intracellular glutamate content. Similarly, at 5 mmol/l glucose without glutamine, glutamine oxidation also increased, and glutamate content decreased with exaggerated insulin secretion. Glucose oxidation was not altered. Insulin secretion profiles from GDH266C-overexpressing isolated rat pancreatic islets were similar to those from MIN6-GDH266C, suggesting observation in MIN6 cells to be relevant in native beta-cells. These results demonstrate that, upon activation, GDH oxidizes glutamate to alpha-ketoglutarate, thereby stimulating insulin secretion by providing the TCA cycle with a substrate. No evidence was obtained supporting the hypothesis that activated GDH produced glutamate, a recently proposed second messenger of insulin secretion, by the reverse reaction, to stimulate insulin secretion. 相似文献