首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Farke AA 《PloS one》2011,6(1):e16196

Background

The validity of Nedoceratops hatcheri, a chasmosaurine ceratopsid dinosaur known from a single skull recovered in the Lance Formation of eastern Wyoming, U.S.A., has been debated for over a century. Some have argued that the taxon is an aberrant Triceratops, and most recently it was proposed that N. hatcheri represents an intermediate ontogenetic stage between “young adult” and “old adult” forms of a single taxon previously split into Triceratops and Torosaurus.

Methodology/Principal Findings

The holotype skull of Nedoceratops hatcheri was reexamined in order to map reconstructed areas and compare the specimen with other ceratopsids. Although squamosal fenestrae are almost certainly not of taxonomic significance, some other features are unique to N. hatcheri. These include a nasal lacking a recognizable horn, nearly vertical postorbital horncores, and relatively small parietal fenestrae. Thus, N. hatcheri is tentatively considered valid, and closely related to Triceratops spp. The holotype of N. hatcheri probably represents an “old adult,” based upon bone surface texture and the shape of the horns and epiossifications on the frill. In this study, Torosaurus is maintained as a genus distinct from Triceratops and Nedoceratops. Synonymy of the three genera as ontogenetic stages of a single taxon would require cranial changes otherwise unknown in ceratopsids, including additions of ossifications to the frill and repeated alternation of bone surface texture between juvenile and adult morphotypes.

Conclusions/Significance

Triceratops, Torosaurus, and likely Nedoceratops, are all distinct taxa, indicating that species richness for chasmosaurine ceratopsids in the Lance Formation just prior to the Cretaceous-Paleocene extinction was roughly equivalent to that earlier in the Cretaceous.  相似文献   

2.

Background

To date, the Lower Cretaceous Jehol Group of western Liaoning, China has yielded five monotypic genera of anurans, including Liaobatrachus grabaui, Callobatrachus sanyanensis, Mesophryne beipiaoensis, Dalianbatrachus mengi, and Yizhoubatrachus macilentus. However, the validity and distinctness of these taxa have been questioned.

Methodology/Principal Finding

We provide a comprehensive analysis of the Jehol frogs that includes a re-examination of the published taxa as well as an examination of a number of new specimens that have been collected over the past 10 years. The results show that the five previously named taxa can be referred to three species of one genus–Liaobatrachus grabaui, L. beipiaoensis comb. nov. and L. macilentus comb. nov.. The diagnosis of Liaobatrachus is revised, and a new diagnosis is provided for each species of this genus. We also establish Liaobatrachus zhaoi sp. nov., on the basis of a dozen well-preserved specimens from a new locality. This taxon is distinguished by a unique combination of characteristics, including relatively long hind limbs, a rounded rather than triangular acetabulum, and a gradually-tapering cultriform process of the parasphenoid. In addition, an unnamed frog from a higher horizon, which has narrow sacral diapophyses and particularly long legs, is different from Liaobatrachus and represents another form of anuran in the Jehol Biota.

Conclusion/Significance

Comparisons with other Mesozoic and extant anurans and the primary phylogenetic analysis both suggest that Liaobatrachus is a member of the anuran crown-group and forms a polytomy with leiopelmatids (Ascaphus and Leiopelma) and the remaining crown-group anurans (Lalagobatrachia).  相似文献   

3.

Background

The Yellow Cat Member of the Cedar Mountain Formation (Early Cretaceous, Barremian?) of Utah has yielded a rich dinosaur fauna, including the basal therizinosauroid theropod Falcarius utahensis at its base. Recent excavation uncovered a new possible therizinosauroid taxon from a higher stratigraphic level in the Cedar Mountain Formation than F. utahensis.

Methodology/Principal Findings

Here we describe a fragmentary skeleton of the new theropod and perform a phylogenetic analysis to determine its phylogenetic position. The skeleton includes fragments of vertebrae, a scapula, forelimb and hindlimb bones, and an ischium. It also includes several well-preserved manual unguals. Manual and pedal morphology show that the specimen is distinct from other theropods from the Cedar Mountain Formation and from previously described therizinosauroids. It is here named as the holotype of a new genus and species, Martharaptor greenriverensis. Phylogenetic analysis places M. greenriverensis within Therizinosauroidea as the sister taxon to Alxasaurus + Therizinosauridae, although support for this placement is weak.

Conclusions/Significance

The new specimen adds to the known dinosaurian fauna of the Yellow Cat Member of the Cedar Mountain Formation. If the phylogenetic placement is correct, it also adds to the known diversity of Therizinosauroidea.  相似文献   

4.
5.
6.

Background and Aims

The events leading to speciation are best investigated in systems where speciation is ongoing or incomplete, such as incipient species. By examining reproductive barriers among incipient sister taxa and their congeners we can gain valuable insights into the relative timing and importance of the various barriers involved in the speciation process. The aim of this study was to identify the reproductive barriers among sexually deceptive orchid taxa in the genus Chiloglottis.

Methods

The study targeted four closely related taxa with varying degrees of geographic overlap. Chemical, morphological and genetic evidence was combined to explore the basis of reproductive isolation. Of primary interest was the degree of genetic differentiation among taxa at both nuclear and chloroplast DNA markers. To objectively test whether or not species boundaries are defined by the chemistry that controls pollinator specificity, genetic analysis was restricted to samples of known odour chemistry.

Key Results

Floral odour chemical analysis was performed for 600+ flowers. The three sympatric taxa were defined by their specific chiloglottones, the semiochemicals responsible for pollinator attraction, and were found to be fully cross-compatible. Multivariate morphometric analysis could not reliably distinguish among the four taxa. Although varying from very low to moderate, significant levels of genetic differentiation were detected among all pairwise combinations of taxa at both nuclear and chloroplast loci. However, the levels of genetic differentiation were lower than expected for mature species. Critically, a lack of chloroplast DNA haplotype sharing among the morphologically indistinguishable and most closely related taxon pair confirmed that chemistry alone can define taxon boundaries.

Conclusions

The results confirmed that pollinator isolation, mediated by specific pollinator attraction, underpins strong reproductive isolation in these taxa. A combination of large effective population sizes, initial neutral mutations in the genes controlling floral scent, and a pool of available pollinators likely drives diversity in this system.  相似文献   

7.

Background

Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species—Troodon formosus—presently known from substantial skeletal remains.

Methodology/Principal Findings

Here we report a gracile new troodontid theropod—Talos sampsoni gen. et sp. nov.—from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar. MicroCT scans reveal extreme pathological remodeling on pedal phalanx II-1 of the holotype specimen likely resulting from physical trauma and subsequent infectious processes.

Conclusion/Significance

Talos sampsoni adds to the singularity of the Kaiparowits Formation dinosaur fauna, which is represented by at least 10 previously unrecognized species including the recently named ceratopsids Utahceratops and Kosmoceratops, the hadrosaurine Gryposaurus monumentensis, the tyrannosaurid Teratophoneus, and the oviraptorosaurian Hagryphus. The presence of a distinct troodontid taxon in the Kaiparowits Formation supports the hypothesis that late Campanian dinosaurs of the Western Interior Basin exhibited restricted geographic ranges and suggests that the taxonomic diversity of Late Cretaceous troodontids from North America is currently underestimated. An apparent traumatic injury to the foot of Talos with evidence of subsequent healing sheds new light on the paleobiology of deinonychosaurians by bolstering functional interpretations of prey grappling and/or intraspecific combat for the second pedal digit, and supporting trackway evidence indicating a minimal role in weight bearing.  相似文献   

8.

Background

Assembling genes from next-generation sequencing data is not only time consuming but computationally difficult, particularly for taxa without a closely related reference genome. Assembling even a draft genome using de novo approaches can take days, even on a powerful computer, and these assemblies typically require data from a variety of genomic libraries. Here we describe software that will alleviate these issues by rapidly assembling genes from distantly related taxa using a single library of paired-end reads: aTRAM, automated Target Restricted Assembly Method. The aTRAM pipeline uses a reference sequence, BLAST, and an iterative approach to target and locally assemble the genes of interest.

Results

Our results demonstrate that aTRAM rapidly assembles genes across distantly related taxa. In comparative tests with a closely related taxon, aTRAM assembled the same sequence as reference-based and de novo approaches taking on average < 1 min per gene. As a test case with divergent sequences, we assembled >1,000 genes from six taxa ranging from 25 – 110 million years divergent from the reference taxon. The gene recovery was between 97 – 99% from each taxon.

Conclusions

aTRAM can quickly assemble genes across distantly-related taxa, obviating the need for draft genome assembly of all taxa of interest. Because aTRAM uses a targeted approach, loci can be assembled in minutes depending on the size of the target. Our results suggest that this software will be useful in rapidly assembling genes for phylogenomic projects covering a wide taxonomic range, as well as other applications. The software is freely available http://www.github.com/juliema/aTRAM.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0515-2) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background and Aims

Myrica rivas-martinezii is a critically endangered endemic of the laurel forest of the Canary Islands and co-occurs very close to M. faya. Some authors suggest that M. rivas-martinezii and M. faya are two morphs of the same species, so molecular markers were used to estimate the levels and structuring of genetic variation within and among natural populations in order to evaluate genetic relationships between these two congeners.

Methods

Six polymorphic microsatellite (simple sequence repeat, SSR) markers were used to determine the genetic diversity and the genetic relationship between both Myrica species.

Key Results

Most of the natural populations analysed were in Hardy–Weinberg equilibrium for both taxa. Analysis of molecular variance (AMOVA) for both species revealed that most of the genetic variability detected was contained within populations (92·48 and 85·91 % for M. faya and M. rivas-martinezii, respectively), which it is consistent with outcrossing and dioecious plants. Estimates of interpopulation genetic variation, calculated from FST and GST, were quite low in the two taxa, and these values did not increase substantially when M. rivas-martinezii and M. faya populations were compared. The UPGMA dendrogram based on Nei''s genetic distance clustered the populations by their island origin, independently of taxon. In fact, the mixture of individuals of both taxa did not appreciably disrupt the intrapopulational genetic cohesion, and only 3·76 % variation existed between species.

Conclusions

All the results obtained using molecular markers indicate clearly that both taxa share the same genetic pool, and they are probably the same taxa. Considering that M. rivas-martinezii is classified as at risk of extinction, there should be a change of focus of the current management actions for the conservation of this putatively endangered Canarian endemic.Key words: Canary Islands, conservation genetics, microsatellites, Myrica rivas-martinezii, Myrica faya, plant conservation  相似文献   

10.

Background

Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood.

Methodology/Principal Findings

The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1–1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil.

Conclusions/Significance

These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities.  相似文献   

11.
12.

Background and Aims

The tribe Spermacoceae is essentially a herbaceous Rubiaceae lineage, except for some species that can be described as ‘woody’ herbs, small shrubs to treelets, or lianas. Its sister tribe Knoxieae contains a large number of herbaceous taxa, but the number of woody taxa is higher compared to Spermacoceae. The occurrence of herbaceous and woody species within the same group raises the question whether the woody taxa are derived from herbaceous taxa (i.e. secondary woodiness), or whether woodiness represents the ancestral state (i.e. primary woodiness). Microscopic observations of wood anatomy are combined with an independent molecular phylogeny to answer this question.

Methods

Observations of wood anatomy of 21 woody Spermacoceae and eight woody Knoxieae species, most of them included in a multi-gene molecular phylogeny, are carried out using light microscopy.

Key Results

Observations of wood anatomy in Spermacoceae support the molecular hypothesis that all the woody species examined are secondary derived. Well-known wood anatomical characters that demonstrate this shift from the herbaceous to the woody habit are the typically flat or decreasing length vs. age curves for vessel elements, the abundance of square and upright ray cells, or even the (near-) absence of rays. These so-called paedomorphic wood features are also present in the Knoxieae genera Otiophora, Otomeria, Pentas, Pentanisia and Phyllopentas. However, the wood structure of the other Knoxieae genera observed (Carphalea, Dirichletia and Triainolepis) is typical of primarily woody taxa.

Conclusions

In Spermacoceae, secondary woodiness has evolved numerous times in strikingly different habitats. In Knoxieae, there is a general trend from primary woodiness towards herbaceousness and back to (secondary) woodiness.Key words: Knoxieae, LM, primary woodiness, Rubiaceae, Rubioideae, secondary woodiness, Spermacoceae, wood anatomy  相似文献   

13.

Background

Baurusuchidae is a group of extinct Crocodyliformes with peculiar, dog-faced skulls, hypertrophied canines, and terrestrial, cursorial limb morphologies. Their importance for crocodyliform evolution and biogeography is widely recognized, and many new taxa have been recently described. In most phylogenetic analyses of Mesoeucrocodylia, the entire clade is represented only by Baurusuchus pachecoi, and no work has attempted to study the internal relationships of the group or diagnose the clade and its members.

Methodology/Principal Findings

Based on a nearly complete skull and a referred partial skull and lower jaw, we describe a new baurusuchid from the Vale do Rio do Peixe Formation (Bauru Group), Late Cretaceous of Brazil. The taxon is diagnosed by a suite of characters that include: four maxillary teeth, supratemporal fenestra with equally developed medial and anterior rims, four laterally visible quadrate fenestrae, lateral Eustachian foramina larger than medial Eustachian foramen, deep depression on the dorsal surface of pterygoid wing. The new taxon was compared to all other baurusuchids and their internal relationships were examined based on the maximum parsimony analysis of a discrete morphological data matrix.

Conclusion

The monophyly of Baurusuchidae is supported by a large number of unique characters implying an equally large morphological gap between the clade and its immediate outgroups. A complex phylogeny of baurusuchids was recovered. The internal branch pattern suggests two main lineages, one with a relatively broad geographical range between Argentina and Brazil (Pissarrachampsinae), which includes the new taxon, and an endemic clade of the Bauru Group in Brazil (Baurusuchinae).  相似文献   

14.

Background and Aims

While molecular approaches can often accurately reconstruct species relationships, taxa that are incompletely differentiated pose a challenge even with extensive data. Such taxa are functionally differentiated, but may be genetically differentiated only at small and/or patchy regions of the genome. This issue is considered here in Poa tussock grass species that dominate grassland and herbfields in the Australian alpine zone.

Methods

Previously reported tetraploidy was confirmed in all species by sequencing seven nuclear regions and five microsatellite markers. A Bayesian approach was used to co-estimate nuclear and chloroplast gene trees with an overall dated species tree. The resulting species tree was used to examine species structure and recent hybridization, and intertaxon fertility was tested by experimental crosses.

Key Results

Species tree estimation revealed Poa gunnii, a Tasmanian endemic species, as sister to the rest of the Australian alpine Poa. The taxa have radiated in the last 0·5–1·2 million years and the non-gunnii taxa are not supported as genetically distinct. Recent hybridization following past species divergence was also not supported. Ongoing gene flow is suggested, with some broad-scale geographic structure within the group.

Conclusions

The Australian alpine Poa species are not genetically distinct despite being distinguishable phenotypically, suggesting recent adaptive divergence with ongoing intertaxon gene flow. This highlights challenges in using conventional molecular taxonomy to infer species relationships in recent, rapid radiations.  相似文献   

15.

Background and Aims

Farfugium (Asteraceae) is a small genus that contains the two species F. japonicum and F. hiberniflorum and is distributed along a long archipelago in east Asia. The common taxon, F. japonicum, includes three varieties associated with a wide range of habitats, including forest understorey (sciophytes), coastal crag (heliophytes) and riverbed (rheophytes). Leaf shape is an important taxonomic character within this genus and is associated with the habitat.

Methods

Twenty populations that included all Farfugium taxa were collected throughout its range. Leaf morphology was measured to determine differences amongst the taxa. Phylogenetic analyses based on sequences of the internal transcribed spacer of nuclear rDNA and four plastid DNA regions (matK, trnL-trnF, trnH-psbA and rpl20-rps12) were conducted separately.

Key Results

Leaf morphology was significantly different amongst taxa, but morphological variations were partly explained by adaptation to certain environmental conditions that each population inhabited. Molecular phylogenies for the nDNA internal transcribed spacer and cpDNA were consistent in classifying F. hiberniflorum and the Taiwanese var. formosanum, whilst suggesting polyphyletic origins for the rheophyte, sciophyte and heliophyte taxa. All samples from the southern Ryukyus (Japan) and Taiwan clustered into a monophyletic group, which corroborates the land configuration theory involving Quaternary land-bridge formation and subsequent fragmentation into islands. The incongruence between the two DNA datasets may imply traces of introgressive hybridization and/or incomplete lineage sorting.

Conclusions

The occurrence of rheophyte, sciophyte and heliophyte plants within Farfugium may be attributable to their isolation on islands and subsequent adaptation to the riparian, coastal crag and forest understorey environments, following their migration over the Quaternary land-bridge formation along their distribution range. Nearly identical DNA sequences coupled with highly divergent morphologies amongst these taxa suggest that diversification was rapid.  相似文献   

16.
Ebihara A  Nitta JH  Ito M 《PloS one》2010,5(12):e15136

Background

DNA barcoding is expected to be an effective identification tool for organisms with heteromorphic generations such as pteridophytes, which possess a morphologically simple gametophyte generation. Although a reference data set including complete coverage of the target local flora/fauna is necessary for accurate identification, DNA barcode studies including such rich taxonomic sampling on a countrywide scale are lacking.

Methodology/Principal Findings

The Japanese pteridophyte flora (733 taxa including subspecies and varieties) was used to test the utility of two plastid DNA barcode regions (rbcL and trnH-psbA) with the intention of developing an identification system for native gametophytes. DNA sequences were obtained from each of 689 (94.0%) taxa for rbcL and 617 (84.2%) taxa for trnH-psbA. Mean interspecific divergence values across all taxon pairs (K2P genetic distances) did not reveal a significant difference in rate between trnH-psbA and rbcL, but mean K2P distances of each genus showed significant heterogeneity according to systematic position. The minimum fail rate of taxon discrimination in an identification test using BLAST (12.52%) was obtained when rbcL and trnH-psbA were combined, and became lower in datasets excluding infraspecific taxa or apogamous taxa, or including sexual diploids only.

Conclusions/Significance

This study demonstrates the overall effectiveness of DNA barcodes for species identification in the Japanese pteridophyte flora. Although this flora is characterized by a high occurrence of apogamous taxa that pose a serious challenge to identification using DNA barcodes, such taxa are limited to a small number of genera, and only minimally detract from the overall success rate. In the case that a query sequence is matched to a known apogamous genus, routine species identification may not be possible. Otherwise, DNA barcoding is a practical tool for identification of most Japanese pteridophytes, and is especially anticipated to be helpful for identification of non-hybridizing gametophytes.  相似文献   

17.

Aims

Rheum palmatum complex comprises all taxa within section Palmata in the genus Rheum, including R. officinale, R. palmatum, R. tanguticum, R. tanguticum var. liupanshanense and R. laciniatum. The identification of the taxa in section Palmata is based primarily on the degree of leaf blade dissection and the shape of the lobes; however, difficulties in species identification may arise from their significant variation. The aim of this study is to analyze the patterns of variation in leaf blade characteristics within and among populations through population-based sampling covering the entire distribution range of R. palmatum complex.

Methods

Samples were taken from 2340 leaves from 780 individuals and 44 populations representing the four species, and the degree of leaf blade dissection and the shape of the lobe were measured to yield a set of quantitative data. Furthermore, those data were statistically analyzed.

Important Findings

The statistical analysis showed that the degree of leaf blade dissection is continuous from lobed to parted, and the shape of the lobe is also continuous from broadly triangular to lanceolate both within and between populations. We suggested that taxa in section Palmata should be considered as one species. Based on the research on the R. palmatum complex, we considered that the quantitative characteristics were greatly influenced by the environment. Therefore, it is not reliable to delimitate the species according to the continuously quantitative vegetative characteristics.  相似文献   

18.

Background and Aims

European white oaks (Quercus petraea, Q. pubescens, Q. robur) have long puzzled plant biologists owing to disputed species differentiation. Extensive hybridization or shared ancestry have been proposed as alternative hypotheses to explain why genetic differentiation between these oak species is low. Species delimitation is usually weak and often shows gradual transitions in leaf morphology. Hence, individual identification may be difficult, but remains a critical step for both scientific work and practical management.

Methods

Multilocus genotype data (five nuclear microsatellites) were used from ten Swiss oak stands for taxon identification without a priori grouping of individuals or populations, using model-based Bayesian assignment tests.

Key Results

Three groups best structured the data, indicating that the taxonomical signal was stronger than the spatial signal. Most individuals showed high posterior probabilities for either of three genetic groups that were best circumscribed as taxonomical units. The assignment of a subset of trees, whose taxonomic status had been previously characterized in detail, supported this classification scheme.

Conclusions

Molecular-genetic assignment tests are useful in the identification of species status in critical taxon complexes such as the European white oaks. Such an approach is of practical importance for forest management, e.g. for stand certification or in seed trade to trace the origin of forest products.Key words: Assignment test, Bayesian inference, multilocus genotype, nuclear microsatellites, Quercus sp., species complex  相似文献   

19.

Background

Varanidae is a clade of tiny (<20 mm pre-caudal length [PCL]) to giant (>600 mm PCL) lizards first appearing in the Cretaceous. True monitor lizards (Varanus) are known from diagnostic remains beginning in the early Miocene (Varanus rusingensis), although extremely fragmentary remains have been suggested as indicating earlier Varanus. The paleobiogeographic history of Varanus and timing for origin of its gigantism remain uncertain.

Methodology/Principal Findings

A new Varanus from the Mytilini Formation (Turolian, Miocene) of Samos, Greece is described. The holotype consists of a partial skull roof, right side of a braincase, partial posterior mandible, fragment of clavicle, and parts of six vertebrae. A cladistic analysis including 83 taxa coded for 5733 molecular and 489 morphological characters (71 previously unincluded) demonstrates that the new fossil is a nested member of an otherwise exclusively East Asian Varanus clade. The new species is the earliest-known giant (>600 mm PCL) terrestrial lizard. Importantly, this species co-existed with a diverse continental mammalian fauna.

Conclusions/Significance

The new monitor is larger (longer) than 99% of known fossil and living lizards. Varanus includes, by far, the largest limbed squamates today. The only extant non-snake squamates that approach monitors in maximum size are the glass-snake Pseudopus and the worm-lizard Amphisbaena. Mosasauroids were larger, but exclusively marine, and occurred only during the Late Cretaceous. Large, extant, non-Varanus, lizards are limbless and/or largely isolated from mammalian competitors. By contrast, our new Varanus achieved gigantism in a continental environment populated by diverse eutherian mammal competitors.  相似文献   

20.

Background and Aims

Reproductive character displacement (RCD) is often an important signature of reinforcement when partially cross-compatible taxa meet in secondary sympatry. In this study, floral evolution is examined during the Holocene range expansion of Clarkia xantiana subsp. parviflora from eastern Pleistocene refugia to a western zone of sympatry with its sister taxon, subsp. xantiana. Floral divergence between the two taxa is greater in sympatry than allopatry. The goal was to test an alternative hypothesis to reinforcement – that floral divergence of sympatric genotypes is simply a by-product of adaptation to pollination environments that differ between the allopatric and sympatric portions of the subspecies'' range.

Methods

Floral trait data from two common garden studies were used to examine floral divergence between sympatric and allopatric regions and among phylogeographically defined lineages. In natural populations of C. x. parviflora, the magnitude of pollen limitation and reproductive assurance were quantified across its west-to-east range. Potted sympatric and allopatric genotypes were also reciprocally translocated between geographical regions to distinguish between the effects of floral phenotype versus contrasting pollinator environments on reproductive ecology.

Key Results

Sympatric populations are considerably smaller flowered with reduced herkogamy. Pollen limitation and the reproductive assurance value of selfing are greater in sympatric than in allopatric populations. Most significantly, reciprocal translocation experiments showed these differences in reproductive ecology cannot be attributed to contrasting pollinator environments between the sympatric and allopatric regions, but instead reflect the effects of flower size on pollinator attraction.

Conclusions

Floral evolution occurred during the westward range expansion of parviflora, particularly in the zone of sympatry with xantiana. No evidence was found that strongly reduced flower size in sympatric parviflora (and RCD between parviflora and xantiana) is due to adaptation to limited pollinator availability. Rather, floral divergence appears to have been driven by other factors, such as interactions with congenerics in secondary sympatry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号