首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental studies have demonstrated significant secondary damage (including cell apoptosis, blood–brain barrier disruption, inflammatory responses, excitotoxic damage, and free radical production) after traumatic brain injury (TBI). Quercetin is a natural flavonoid found in high quantities in fruits and vegetables, and may be a potential antioxidant and free radical scavenger. The purpose of this study was to determine the effects of quercetin on TBI-induced upregulation of oxidative stress, inflammation, and apoptosis in adult Sprague–Dawley rats. Animals were subjected to Feeney’s weight-drop injury, thus inducing the parietal contusion brain injury model. Quercetin was administered (30 mg/kg intraperitoneal injection) 0, 24, 48, and 72 h after TBI. Quercetin reduced cognitive deficits, the number of TUNEL- and ED-1-positive cells, the protein expressions of Bax and cleaved-caspase-3 proteins, and the levels of TBARS and proinflammatory cytokines, and increased the activity of antioxidant enzymes (GSH-Px, SOD, and CAT) at 1 week after TBI. Our results suggest that in TBI rats, quercetin improves cognitive function owing to its neuroprotective action via the inhibition of oxidative stress, leading to a reduced inflammatory response, thereby reducing neuronal death.  相似文献   

2.
Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation, which is one of the major mechanisms of secondary traumatic brain injury (TBI), has also been reported in pediatric head trauma. In the present study, we aimed to demonstrate the effect of melatonin, which is a potent free radical scavenger, on brain oxidative damage in 7-day-old rat pups subjected to contusion injury. Whereas TBI significantly increased thiobarbituric acid reactive substances (TBARS) levels, there was no compensatory increase in the antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) 24 hours after TBI in 7-day-old rats. Melatonin administered as a single dose of 5 mg/kg prevented the increase in TBARS levels in both non-traumatized and traumatized brain hemispheres. In conclusion, melatonin protects against oxidative damage induced by TBI in the immature brain.  相似文献   

3.
Traumatic brain injury (TBI) incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2), blood brain barrier proteins (AQP4) and astrogliosis markers (vimentin) to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h), early mid-term (72h) and late mid-term (two weeks). Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.  相似文献   

4.
The aim of this study was to evaluate the therapeutic efficacy of caffeic acid phenethyl ester (CAPE) with an experimental traumatic brain injury (TBI) model in rats. Twenty-four adult male Sprague–Dawley rats were randomly divided into three groups of 8 rats each: control, TBI, and TBI + CAPE treatment. In TBI and TBI + CAPE treatment groups, a cranial impact was delivered to the skull from a height of 7 cm at a point just in front of the coronal suture and over the right hemisphere. Rats were sacrificed at 4 h after the onset of injury. Brain tissues were removed for biochemical and histopathological investigation. To date, no biochemical and histopathological changes of neurodegeneration in the frontal cortex after TBI in rats by CAPE treatment have been reported. The TBI significantly increased tissue malondialdehyde (MDA) levels, and significantly decreased tissue superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, but not tissue catalase (CAT) activity, when compared with controls. The administration of a single dose of CAPE (10 μmol/kg) 15 min after the trauma has shown protective effect via decreasing significantly the elevated MDA levels and also significantly increasing the reduced antioxidant enzyme (SOD and GPx) activities, except CAT activity. In the TBI group, severe degenerative changes, shrunken cytoplasma and extensively dark picnotic nuclei in neurons, as well as vacuolization indicating tissue edema formation. The morphology of neurons in the CAPE treatment group was well protected. The number of neurons in the trauma alone group was significantly less than that of both the control and TBI +CAPE treatment groups. The caspase 3 immunopositivity was increased in degenerating neurons of the traumatic brain tissue. Treatment of CAPE markedly reduced the immunoreactivity of degenerating neurons. TBI caused severe degenerative changes, shrunken cytoplasma, severely dilated cisternae of endoplasmic reticulum, markedly swollen mitochondria with degenerated cristae and nuclear membrane breakdown with chromatin disorganization in neurons of the frontal cortex. In conclusion, the CAPE treatment might be beneficial in preventing trauma-induced oxidative brain tissue damage, thus showing potential for clinical implications. We believe that further preclinical research into the utility of CAPE may indicate its usefulness as a potential treatment on neurodegeneration after TBI in rats.  相似文献   

5.
Traumatic brain injury (TBI) was induced by a weight-drop device using 300 g–1 m weight-height impact. The study groups were: control, alpha-lipoic acid (LA) (100 mg/kg, po), TBI, and TBI + LA (100 mg/kg, po). Forty-eight hours after the injury, neurological scores were measured and brain samples were taken for histological examination or determination of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na+-K+ ATPase activities, whereas cytokines (TNF-α, IL-1β) were determined in blood. Brain oedema was evaluated by wet–dry weight method and blood–brain barrier (BBB) permeability was evaluated by Evans Blue (EB) extravasation. As a result, neurological scores mildly increased in trauma groups. Moreover, TBI caused a significant decrease in brain GSH and Na+-K+ ATPase activity, which was accompanied with significant increases in TBARS level, MPO activity and plasma proinflammatory cytokines. LA treatment reversed all these biochemical indices as well as histopathological alterations. TBI also caused a significant increase in brain water content and EB extravasation which were partially reversed by LA treatment. These findings suggest that LA exerts neuroprotection by preserving BBB permeability and by reducing brain oedema probably by its anti-inflammatory and antioxidant properties in the TBI model.  相似文献   

6.
Manganese superoxide dismutase (MnSOD) provides the first line of defense against superoxide generated in mitochondria. SOD competes with nitric oxide for reaction with superoxide and prevents generation of peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. Thus, sufficient amounts of catalytically competent MnSOD are required to prevent mitochondrial damage. Increased nitrotyrosine immunoreactivity has been reported after traumatic brain injury (TBI); however, the specific protein targets containing modified tyrosine residues and functional consequence of this modification have not been identified. In this study, we show that MnSOD is a target of tyrosine nitration that is associated with a decrease in its enzymatic activity after TBI in mice. Similar findings were obtained in temporal lobe cortical samples obtained from TBI cases versus control patients who died of causes not related to CNS trauma. Increased nitrotyrosine immunoreactivity was detected at 2 h and 24 h versus 72 h after experimental TBI and co-localized with the neuronal marker NeuN. Inhibition and/or genetic deficiency of neuronal nitric oxide synthase (nNOS) but not endothelial nitric oxide synthase (eNOS) attenuated MnSOD nitration after TBI. At 24 h after TBI, there was predominantly polymorphonuclear leukocytes accumulation in mouse brain whereas macrophages were the predominant inflammatory cell type at 72 h after injury. However, a selective inhibitor or genetic deficiency of inducible nitric oxide synthase (iNOS) failed to affect MnSOD nitration. Nitration of MnSOD is a likely consequence of peroxynitrite within the intracellular milieu of neurons after TBI. Nitration and inactivation of MnSOD could lead to self-amplification of oxidative stress in the brain progressively enhancing peroxynitrite production and secondary damage.  相似文献   

7.
Traumatic brain injury (TBI) induces glutamatergic excitotoxicity through N-methyl-d-aspartate (NMDA) receptors, affecting the integrity of the mitochondrial membrane. Studies have pointed to mitochondria as the master organelle in the preconditioning-triggered endogenous neuroprotective response. The present study is aimed at understanding energy metabolism in the brains of mice after preconditioning with NMDA and TBI. For this purpose, male albino CF-1 mice were pre-treated with NMDA (75 mg/kg) and subjected to brain trauma. Mitochondrial respiratory chain and creatine kinase activities were assessed at 6 or 24 h after trauma. The mice preconditioned and subjected to TBI exhibited augmented activities of complexes II and IV in the cerebral cortex and/or cerebellum. Creatine kinase activity was also augmented in the cerebral cortex after 24 h. We suggest that even though NMDA preconditioning and TBI have similar effects on enzyme activities, each manage their response via opposite mechanisms because the protective effects of preconditioning are unambiguous. In conclusion, NMDA preconditioning induces protection via an increase of enzymes in the mitochondria.  相似文献   

8.
The pathological sequelae of traumatic brain injury (TBI) include increased oxidative stress due to the production of reactive oxygen species (ROS). Regulation of ROS levels following TBI is determined primarily by antioxidant enzyme activity that in turn can be influenced by nerve growth factor (NGF). Hypothermia is one of the current therapies designed to combat the deleterious effects of TBI. However, it has been shown to suppress post-trauma increases in NGF levels in rat brain. The present study sought to determine whether post-injury hypothermia also impairs the antioxidant response to injury, and if such an effect could be reversed by infusion of exogenous NGF. We employed a lateral controlled cortical impact injury model in rat, followed by moderate hypothermia treatment with supplemental intracerebroventricular infusion of NGF or vehicle. The time course of changes in post-injury/intervention levels of NGF and activity of three major enzymes responsible for ROS scavenging, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), was determined in the hippocampus. Relative to levels in injured, normothermic animals, hypothermia treatment not only suppressed NGF levels, but also attenuated CAT and GPx activity, and increased SOD activity. Infusion of NGF in injured, hypothermia-treated animals was ineffective in restoring hippocampal antioxidant enzymes activity to levels produced after injury under normothermic conditions, although it was able to increase septal cholinergic (choline acetyltransferase) enzyme activity. These results have implications for clinical treatment of TBI, demonstrating that moderate hypothermia suppresses NGF and the antioxidant response after TBI; the latter cannot be countered by exogenous NGF administration.  相似文献   

9.
Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H(2)O(2) production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (相似文献   

10.
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a−/− mice and found reduced neurodegeneration after FPI. Both HCO3 administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI.  相似文献   

11.
Decreased cell membrane integrity is a primary pathological change observed in traumatic brain injury (TBI) that activates a number of complex intercellular and intracellular pathological events, leading to further neural injury. In this paper, we assessed the effects of urinary trypsin inhibitor (UTI) on astrocyte membrane integrity by determining the percentage of lactate dehydrogenase (LDH) released after sustained compression injury using a hydrostatic pressure model of mechanical-like TBI. Astrocytes isolated from SD rat pups were injured by sustained compression. At a pressure of 0.3 MPa for 5 min, a significant increase in LDH release was observed compared with control samples. Astrocytes displayed extensive structural disruption of mitochondrial cristae reflected in their swelling. Based on our initial results, injured astrocytes were treated with UTI at a final concentration of 500, 1,000, 3,000 or 5,000 U/ml for 24 h. The percentage of LDH released from injured astrocytes was significantly decreased when 1,000 and 3,000 U/ml of UTI were used. In a separate experiment, astrocytes were treated with UTI at a final concentration of 1,000 U/ml immediately, or at 30 min, 2, 6, or 24 h after sustained compression. The percentage of LDH release was significantly reduced (P < 0.05) when astrocytes were treated with UTI immediately or 30 min later. Together, our results suggest that UTI may have protective effects on astrocytes injured by sustained compression injury. Furthermore, the early administration (<2 h after injury) of UTI may result in a better outcome compared with delayed administration.  相似文献   

12.
Traumatic brain injury (TBI) and hemorrhagic shock often occur concomitantly due to multiple injuries. Gastrointestinal dysfunction occurs frequently in patients with TBI. However, whether alterations in the gastrointestinal system are involved in modulating neuronal damage and recovery after TBI is largely neglected. Ghrelin is a "gut-brain" hormone with multiple functions including antiinflammation and antiapoptosis. The purpose of this study was to determine whether ghrelin attenuates brain injury in a rat model of TBI and uncontrolled hemorrhage (UH). To study this, brain injury was induced by dropping a 450-g weight from 1.5 m onto a steel helmet attached to the skull of male adult rats. Immediately after TBI, a midline laparotomy was performed and both lumbar veins were isolated and severed at the junction with the vena cava. At 45 min after TBI/UH, ghrelin (4, 8 or 16 nmol/rat) or 1 mL normal saline (vehicle) was intravenously administered. Brain levels of TNF-α and IL-6, and cleaved PARP-1 levels in the cortex were measured at 4 h after TBI/UH. Beam balance test, forelimb placing test and hindlimb placing test were used to assess sensorimotor and reflex function. In additional groups of animals, ghrelin (16 nmol/rat) or vehicle was subcutaneously (s.c.) administered daily for 10 d after TBI/UH. The animals were monitored for 28 d to record body weight changes, neurological severity scale and survival. Our results showed that ghrelin downregulated brain levels of TNF-α and IL-6, reduced cortical levels of cleaved PARP-1, improved sensorimotor and reflex functions, and decreased mortality after TBI/UH. Thus, ghrelin has a great potential to be further developed as an effective resuscitation approach for the trauma victims with brain injury and severe blood loss.  相似文献   

13.
Sulphadoxine-pyrimethamine (SP) despite reported resistance remains an important drug of choice for the treatment and control of malaria in most endemic areas. Exacerbation of intra-erythrocytic oxidative stress might contribute to the process of elimination of malaria parasites in the body. The effect of treatment with SP on the antioxidant defense system was investigated using rabbit as a model. Ten male rabbits were divided into two groups of five animals each. The first group was administered with normal saline and served as control. The second group received a single dose of SP (26.25mg/kg body weight). Blood samples were collected before and at 6, 12 and 24 h after drug administration. Activity of cellular enzymatic antioxidants, superoxide dismutase (SOD) and catalase (CAT), and level of reduced glutathione (GSH) were assayed using standard spectrophotometric methods. Serum lipid peroxidation was assessed by the formation of thiobarbituric acid reactive species (TBARS) while protein content was assayed by the method of Lowry et al., 1951. SOD activity was observed to increase progressively by 4.9, 63.4 and 120.8% at 6, 12 and 24 h respectively, after drug administration. Similarly, CAT activity increased by 44.5, 82.6 and 116.3% at 6, 12 and 24 h, respectively. TBARS level also increased significantly by 45.5, 118.2 and 186.4%, respectively. However, the level of GSH decreased by 41.9% at 6 h and remained so up till the 12 h, but by 24 h after drug administration, the level of the thiol substance has increased considerably up to 48.4% above the baseline level. SP treatment altered the antioxidant defense system in blood and may therefore induce oxidative stress by generating reactive oxygen species. This might play significant role in the therapeutic and adverse effects associated with the drug.  相似文献   

14.
Although a number of increased CSF proteins have been correlated with brain damage and outcome after traumatic brain injury (TBI), a major limitation of currently tested biomarkers is a lack of specificity for defining neuropathological cascades. Identification of surrogate biomarkers that are elevated in CSF in response to brain injury and that offer insight into one or more pathological neurochemical events will provide critical information for appropriate administration of therapeutic compounds for treatment of TBI patients. Non-erythroid alpha II-spectrin is a cytoskeletal protein that is a substrate of both calpain and caspase-3 cysteine proteases. As we have previously demonstrated, cleavage of alpha II-spectrin by calpain and caspase-3 results in accumulation of protease-specific spectrin breakdown products (SBDPs) that can be used to monitor the magnitude and temporal duration of protease activation. However, accumulation of alpha II-spectrin and alpha II-SBDPs in CSF after TBI has never been examined. Following a moderate level (2.0 mm) of controlled cortical impact TBI in rodents, native alpha II-spectrin protein was decreased in brain tissue and increased in CSF from 24 h to 72 h after injury. In addition, calpain-specific SBDPs were observed to increase in both brain and CSF after injury. Increases in the calpain-specific 145 kDa SBDP in CSF were 244%, 530% and 665% of sham-injured control animals at 24 h, 48 h and 72 h after TBI, respectively. The caspase-3-specific SBDP was observed to increase in CSF in some animals but to a lesser degree. Importantly, levels of these proteins were undetectable in CSF of uninjured control rats. These results indicate that detection of alpha II-spectrin and alpha II-SBDPs is a powerful discriminator of outcome and protease activation after TBI. In accord with our previous studies, results also indicate that calpain may be a more important effector of cell death after moderate TBI than caspase-3.  相似文献   

15.
Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage.  相似文献   

16.
In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30–60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.  相似文献   

17.
重度创伤性脑损伤后肠黏膜屏障应激性变化的模型   总被引:1,自引:0,他引:1  
目的建立一种观察重度创伤性脑损伤(TBI)后肠黏膜屏障(IMB)应激性变化的模型。方法选用雄性Wistar大鼠64只,随机分为两组。TBI组(32只):采用改良的Feeney自由落体撞击法,建立TBI模型;假手术对照组(32只):只开骨窗,不行落体致伤。两组大鼠分别按术后6、12、24和48h时相点分为4个亚组(每组均为8只),观察脑组织、肠黏膜组织病理以及扫描和透射电镜下肠黏膜超微结构的变化。结果光镜下TBI组肠黏膜上皮细胞受损,电镜下还可见细胞间紧密连接较对照组明显增宽。结论用改良的Feeney自由落体撞击法,建立的重度TBI大鼠模型肠黏膜上皮细胞受损,细胞间紧密连接增宽,提示其IMB的功能的确发生了应激性损害,说明这种用来观察重度TBI后IMB应激性变化的模型是成功的。  相似文献   

18.
Tyrosine hydroxylase (TH), glutamate-decarboxylase (GAD) and choline acetyltransferase (CAT) were estimated in the striatum of rat brains kept at 20°C or 4°C for various periods of time up to 48 h after death. At 20°C TH and GAD activities decreased up to 4&50% of controls after 48 h; CAT activity was not affected. Maintenance of dead animals at 4°C completely (GAD and CAT) or partially (TH) prevented the decrease in enzyme activities. In a second series of experiments, TH, G A D and CAT activities were measured in striata (tissue or homogenate) stored immediately after death at different temperatures (4°C; -35°C; -70°C) for various time intervals up to 3 months. Storage of striata at 4°C induced a rapid decrease of all enzyme activities with time (GAD > CAT > TH). TH, GAD and CAT activities in striata kept at -35°C or -70°C were fairly stable. However, CAT activity was slightly decreased when the dissected striata were not homogenized; GAD activity was substantially reduced after 3 months at -35°C. Stability of TH, GAD and CAT activities were confirmed in homogenates of human caudate nucleus stored at -70°C for 1 month. If human enzymes behave similarly to the rat enzymes the following conclusions should be drawn: (1) brains should be obtained at autopsy within 8 h after death; (2) placement of dead bodies in the refrigerator should be done as soon as possible; (3) dissected brain structures (preferably as homogenates) should be stored at -70°C.  相似文献   

19.
Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). An important early component of the edema associated with TBI is astrocyte swelling (cytotoxic edema). Mechanisms for such swelling, however, are poorly understood. Ion channels/transporters/exchangers play a major role in cell volume regulation, and a disturbance in one or more of these systems may result in cell swelling. To examine potential mechanisms in TBI-mediated brain edema, we employed a fluid percussion model of in vitro barotrauma and examined the role of the ion transporter Na(+)-K(+)-2Cl(-)-cotransporter 1 (NKCC1) in trauma-induced astrocyte swelling as this transporter has been strongly implicated in the mechanism of cell swelling in various neurological conditions. Cultures exposed to trauma (3, 4, 5 atm pressure) caused a significant increase in NKCC1 activity (21%, 42%, 110%, respectively) at 3 h. At 5 atm pressure, trauma significantly increased NKCC1 activity at 1 h and it remained increased for up to 3 h. Trauma also increased the phosphorylation (activation) of NKCC1 at 1 and 3 h. Inhibition of MAPKs and oxidative/nitrosative stress diminished the trauma-induced NKCC1 phosphorylation as well as its activity. Bumetanide, an inhibitor of NKCC1, significantly reduced the trauma-induced astrocyte swelling (61%). Silencing NKCC1 with siRNA led to a reduction in trauma-induced NKCC1 activity as well as in cell swelling. These findings demonstrate the critical involvement of NKCC1 in the astrocyte swelling following in vitro trauma, and suggest that blocking NKCC1 activity may represent a useful therapeutic strategy for the cytotoxic brain edema associated with the early phase of TBI.  相似文献   

20.
Caspases, a cysteine proteinase family, are required for the initiation and execution phases of apoptosis. It has been suggested that caspase 7, an apoptosis executioner implicated in cell death proteolysis, is redundant to the main executioner caspase 3 and it is generally believed that it is not present in the brain or present in only minute amounts with highly restricted activity. Here we report evidence that caspase 7 is up-regulated and activated after traumatic brain injury (TBI) in rats. TBI disrupts homeostasis resulting in pathological apoptotic activation. After controlled cortical impact TBI of adult male rats we observed, by semiquantitative real-time PCR, increased mRNA levels within the traumatized cortex and hippocampus peaking in the former about 5 days post-injury and in the latter within 6-24 h of trauma. The activation of caspase 7 protein after TBI, demonstrated by immunoblot by the increase of the active form of caspase 7 peaking 5 days post-injury in the cortex and hippocampus, was found to be up-regulated in both neurons and astrocytes by immunohistochemistry. These findings, the first to document the up-regulation of caspase 7 in the brain after acute brain injury in rats, suggest that caspase 7 activation could contribute to neuronal cell death on a scale not previously recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号