首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
Le S  Moore JK  Haber JE  Greider CW 《Genetics》1999,152(1):143-152
Telomere length is maintained by the de novo addition of telomere repeats by telomerase, yet recombination can elongate telomeres in the absence of telomerase. When the yeast telomerase RNA component, TLC1, is deleted, telomeres shorten and most cells die. However, gene conversion mediated by the RAD52 pathway allows telomere lengthening in rare survivor cells. To further investigate the role of recombination in telomere maintenance, we assayed telomere length and the ability to generate survivors in several isogenic DNA recombination mutants, including rad50, rad51, rad52, rad54, rad57, xrs2, and mre11. The rad51, rad52, rad54, and rad57 mutations increased the rate of cell death in the absence of TLC1. In contrast, although the rad50, xrs2, and mre11 strains initially had short telomeres, double mutants with tlc1 did not affect the rate of cell death, and survivors were generated at later times than tlc1 alone. While none of the double mutants of recombination genes and tlc1 (except rad52 tlc1) blocked the ability to generate survivors, a rad50 rad51 tlc1 triple mutant did not allow the generation of survivors. Thus RAD50 and RAD51 define two separate pathways that collaborate to allow cells to survive in the absence of telomerase.  相似文献   

2.
In Saccharomyces cerevisiae, the Rad52 protein plays a role in both RAD51-dependent and RAD51-independent recombination pathways. We characterized a rad52 mutant, rad52-329, which lacks the C-terminal Rad51-interacting domain, and studied its role in RAD51-independent recombination. The rad52-329 mutant is completely defective in mating-type switching, but partially proficient in recombination between inverted repeats. We also analyzed the effect of the rad52-329 mutant on telomere recombination. Yeast cells lacking telomerase maintain telomere length by recombination. The rad52-329 mutant is deficient in RAD51-dependent telomere recombination, but is proficient in RAD51-independent telomere recombination. In addition, we examined the roles of other recombination genes in the telomere recombination. The RAD51-independent recombination in the rad52-329 mutant is promoted by a paralogue of Rad52, Rad59. All components of the Rad50-Mre11-Xrs2 complex are also important, but not essential, for RAD51-independent telomere recombination. Interestingly, RAD51 inhibits the RAD51-independent, RAD52-dependent telomere recombination. These findings indicate that Rad52 itself, and more precisely its N-terminal DNA-binding domain, promote an essential reaction in recombination in the absence of RAD51.  相似文献   

3.
In the yeast Saccharomyces cerevisiae, Cdc13, Yku, and telomerase define three parallel pathways for telomere end protection that prevent chromosome instability and death by senescence. We report here that cdc13-1 yku70delta mutants generated telomere deprotection-resistant cells that, in contrast with telomerase-negative senescent cells, did not display classical crisis events. cdc13-1 yku70delta cells survived telomere deprotection by exclusively amplifying TG(1-3) repeats (type II recombination). In a background lacking telomerase (tlc1delta), this process predominated over type I recombination (amplification of subtelomeric Y' sequences). Strikingly, inactivation of the Rad50/Rad59 pathway (which is normally required for type II recombination) in cdc13-1 yku70delta or yku70delta tlc1delta mutants, but also in cdc13-1 YKU70(+) tlc1delta mutants, still permitted type II recombination, but this process was now entirely dependent on the Rad51 pathway. In addition, delayed senescence was observed in cdc13-1 yku70delta rad51delta and cdc13-1 tlc1delta rad51delta cells. These results demonstrate that in wild-type cells, masking by Cdc13 and Yku prevents the Rad51 pathway from amplifying telomeric TG(1-3) sequences. They also suggest that Rad51 is more efficient than Rad50 in amplifying the sequences left uncovered by the absence of Cdc13 or Yku70.  相似文献   

4.
SGS1 is required for telomere elongation in the absence of telomerase   总被引:22,自引:0,他引:22  
In S. cerevisiae, mutations in genes that encode telomerase components, such as the genes EST1, EST2, EST3, and TLC1, result in the loss of telomerase activity in vivo. Two telomerase-independent mechanisms can overcome the resulting senescence. Type I survival is characterized by amplification of the subtelomeric Y' elements with a short telomere repeat tract at the terminus. Type II survivors arise through the abrupt addition of long tracts of telomere repeats. Both mechanisms are dependent on RAD52 and on either RAD50 or RAD51. We show here that the telomere elongation pathway in yeast (type II) is dependent on SGS1, the yeast homolog of the gene products of Werner's (WRN) and Bloom's (BLM) syndromes. Survival in the absence of SGS1 and EST2 is dependent upon RAD52 and RAD51 but not RAD50. We propose that the RecQ family helicases are required for processing a DNA structure specific to eroding telomeres.  相似文献   

5.
Broken chromosomes can be repaired by several homologous recombination mechanisms, including gene conversion and break-induced replication (BIR). In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break (DSB) is normally repaired by gene conversion. Previously, we have shown that in the absence of RAD52, repair is nearly absent and diploid cells lose the broken chromosome; however, in cells lacking RAD51, gene conversion is absent but cells can repair the DSB by BIR. We now report that gene conversion is also abolished when RAD54, RAD55, and RAD57 are deleted but BIR occurs, as with rad51Delta cells. DSB-induced gene conversion is not significantly affected when RAD50, RAD59, TID1 (RDH54), SRS2, or SGS1 is deleted. Various double mutations largely eliminate both gene conversion and BIR, including rad51Delta rad50Delta, rad51Delta rad59Delta, and rad54Delta tid1Delta. These results demonstrate that there is a RAD51- and RAD54-independent BIR pathway that requires RAD59, TID1, RAD50, and presumably MRE11 and XRS2. The similar genetic requirements for BIR and telomere maintenance in the absence of telomerase also suggest that these two processes proceed by similar mechanisms.  相似文献   

6.
Maringele L  Lydall D 《Genetics》2004,166(4):1641-1649
Telomerase-defective budding yeast cells escape senescence by using homologous recombination to amplify telomeric or subtelomeric structures. Similarly, human cells that enter senescence can use homologous recombination for telomere maintenance, when telomerase cannot be activated. Although recombination proteins required to generate telomerase-independent survivors have been intensively studied, little is known about the nucleases that generate the substrates for recombination. Here we demonstrate that the Exo1 exonuclease is an initiator of the recombination process that allows cells to escape senescence and become immortal in the absence of telomerase. We show that EXO1 is important for generating type I survivors in yku70delta mre11delta cells and type II survivors in tlc1delta cells. Moreover, in tlc1delta cells, EXO1 seems to contribute to the senescence process itself.  相似文献   

7.
Homologous recombination and repair factors are known to promote both telomere replication and recombination‐based telomere extension. Herein, we address the diverse contributions of several recombination/repair proteins to telomere maintenance in Ustilago maydis, a fungus that bears strong resemblance to mammals with respect to telomere regulation and recombination mechanisms. In telomerase‐positive U. maydis, deletion of rad51 and blm separately caused shortened but stably maintained telomeres, whereas deletion of both engendered similar telomere loss, suggesting that the repair proteins help to resolve similar problems in telomere replication. In telomerase‐negative cells, the loss of Rad51 or Brh2 caused accelerated senescence and failure to generate survivors on semi‐solid medium. However, slow growing survivors can be isolated through continuous liquid culturing, and these survivors exhibit type II‐like as well as ALT‐like telomere features. In contrast, the trt1Δ blmΔ double mutant gives rise to survivors as readily as the trt1Δ single mutant, and like the single mutant survivors, exhibit almost exclusively type I‐like telomere features. In addition, we observed direct physical interactions between Blm and two telomere‐binding proteins, which may thus recruit or regulate Blm at telomeres. Our findings provide the basis for further analyzing the interplays between telomerase, telomere replication, and telomere recombination.  相似文献   

8.
In yeast telomerase mutants, the Sgs1 RecQ helicase slows the rate of senescence and also facilitates the appearance of certain types of survivors of critical telomere shortening via mechanisms dependent on Rad52-dependent homologous recombination (HR). Here we describe a third function for Sgs1 in telomerase-deficient cells, inhibition of survivors that grow independent of Rad52. Unlike tlc1 rad52 double mutants, which do not form survivors of telomere dysfunction, tlc1 rad52 sgs1 triple mutants readily generated survivors. After emerging from growth crisis, the triple mutants progressively lost telomeric and subtelomeric sequences, yet grew for more than 1 year. Analysis of cloned chromosome termini and of copy number changes of loci genome-wide using tiling arrays revealed terminal deletions extending up to 57 kb, as well as changes in Ty retrotransposon copy numbers. Amplification of the remaining terminal sequences generated large palindromes at some chromosome termini. Sgs1 helicase activity but not checkpoint function was essential for inhibiting the appearance of the survivors, and the continued absence of Sgs1 was required for the growth of the established survivors. Thus, in addition to facilitating the maintenance of telomere repeat sequences via HR-dependent mechanisms, a RecQ helicase can prevent the adoption of HR-independent mechanisms that stabilize chromosome termini without the use of natural telomere sequences. This provides a novel mechanism by which RecQ helicases may help maintain genome integrity and thus prevent age-related diseases and cancer.  相似文献   

9.
Mott C  Symington LS 《DNA Repair》2011,10(4):408-415
Recombination between inverted repeats is RAD52 dependent, but reduced only modestly in the rad51Δ mutant. RAD59 is required for RAD51-independent inverted-repeat recombination, but no clear mechanism for how recombination occurs in the absence of RAD51 has emerged. Because Rad59 is thought to function as an accessory factor for the single-strand annealing activity of Rad52 one possible mechanism for spontaneous recombination could be by strand annealing between repeats at a stalled replication fork. Here we demonstrate the importance of the Rad52 single-strand annealing activity for generating recombinants by showing suppression of the rad52Δ, rad51Δ rad52Δ and rad52Δ rad59Δ inverted-repeat recombination defects by the rfa1-D228Y mutation. In addition, formation of recombinants in the rad51Δ mutant was sensitive to the distance between the inverted repeats, consistent with a replication-based mechanism. Deletion of RAD5 or RAD18, which are required for error-free post-replication repair, reduced the recombination rate in the rad59Δ mutant, but not in wild type. These data are consistent with RAD51-independent recombinants arising by a faulty template switch mechanism that is distinct from nascent strand template switching.  相似文献   

10.
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In yeast cells that lack telomerase, telomeres are maintained by alternative type I and type II recombination mechanisms. Previous studies identified several proteins to control the choice between two types of recombinations. Here, we demonstrate that configuration of telomeres also plays a role to determine the fate of telomere replication in progeny. When diploid yeasts from mating equip with a specific type of telomeric structure in their genomes, they prefer to maintain this type of telomere replication in their descendants. While inherited telomere structure is easier to be utilized in progeny at the beginning stage, the telomeres in type I diploids can gradually switch to the type II cells in liquid culture. Importantly, the TLC1/tlc1 yeast cells develop type II survivors suggesting that haploid insufficiency of telomerase RNA component, which is similar to a type of dyskeratosis congenital in human. Altogether, our results suggest that both protein factors and substrate availability contribute to the choice among telomere replication pathways in yeast.  相似文献   

11.
The role of RAD52 epistasis group genes on spontaneous mitotic recombination was examined using three different types of spontaneous mitotic recombination in Saccharomyces cerevisiae. The spontaneous recombination between homologous sequences in a plasmid and a chromosome was essentially unaffected by null mutations in any of the RAD52 epistasis group genes. Recombination between genes in separate autonomously replicating plasmids was reduced 833-fold in a rad52 null mutant, but only 2- to at most 20-fold in rad50, 51, 54, 55, 57 null mutants. Recombination between tandemly repeated heteroalleles in an autonomously replicating plasmid was reduced almost 100-fold in a rad52 null mutant, but is either unaffected or slightly increased in rad50, 51, 54, 55, 57 null mutants. The finding that RAD50, 51, 54, 55, 57 are dispensable or marginally involved in these spontaneous recombinations suggests further that spontaneous mitotic recombination in S. cerevisiae might be processed by other than RAD52 epistasis group.  相似文献   

12.
RecQ helicases, including Saccharomyces cerevisiae Sgs1p and the human Werner syndrome protein, are important for telomere maintenance in cells lacking telomerase activity. How maintenance is accomplished is only partly understood, although there is evidence that RecQ helicases function in telomere replication and recombination. Here we use two-dimensional gel electrophoresis (2DGE) and telomere sequence analysis to explore why cells lacking telomerase and Sgs1p (tlc1 sgs1 mutants) senesce more rapidly than tlc1 mutants with functional Sgs1p. We find that apparent X-shaped structures accumulate at telomeres in senescing tlc1 sgs1 mutants in a RAD52- and RAD53-dependent fashion. The X-structures are neither Holliday junctions nor convergent replication forks, but instead may be recombination intermediates related to hemicatenanes. Direct sequencing of examples of telomere I-L in senescing cells reveals a reduced recombination frequency in tlc1 sgs1 compared with tlc1 mutants, indicating that Sgs1p is needed for tlc1 mutants to complete telomere recombination. The reduction in recombinants is most prominent at longer telomeres, consistent with a requirement for Sgs1p to generate viable progeny following telomere recombination. We therefore suggest that Sgs1p may be required for efficient resolution of telomere recombination intermediates, and that resolution failure contributes to the premature senescence of tlc1 sgs1 mutants.  相似文献   

13.
Telomerase-deficient mutants of Saccharomyces cerevisiae can survive death by senescence by using one of two homologous recombination pathways. The Rad51 pathway amplifies the subtelomeric Y' sequences, while the Rad50 pathway amplifies the telomeric TG(1-3) repeats. Here we show that telomerase-negative cells require Clb2 (the major B-type cyclin in this organism), in association with Cdc28 (Cdk1), to generate postsenescence survivors at a normal rate. The Rad50 pathway was more sensitive to the absence of Clb2 than the Rad51 pathway. We also report that telomerase RAD50 RAD51 triple mutants still generated postsenescence survivors. This novel Rad50- and Rad51-independent pathway of telomeric recombination also appeared to be controlled by Clb2. In telomerase-positive cells, a synthetic growth defect between mutations in CLB2 and RAD50 or in its partners in the conserved MRX complex, MRE11 and XRS2, was observed. This genetic interaction was independent of Mre11 nuclease activity but was dependent on a DNA repair function. The present data reveal an unexpected role of Cdc28/Clb2 in telomeric recombination during telomerase-independent maintenance of telomeres. They also uncover a functional interaction between Cdc28/Clb2 and MRX during the control of the mitotic cell cycle.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, chromosomes terminate with a repetitive sequence [poly(TG(1-3))] 350 to 500 bp in length. Strains with a mutation of TEL1, a homolog of the human gene (ATM) mutated in patients with ataxia telangiectasia, have short but stable telomeric repeats. Mutations of TLC1 (encoding the RNA subunit of telomerase) result in strains that have continually shortening telomeres and a gradual loss of cell viability; survivors of senescence arise as a consequence of a Rad52p-dependent recombination events that amplify telomeric and subtelomeric repeats. We show that a mutation in MEC1 (a gene related in sequence to TEL1 and ATM) reduces telomere length and that tel1 mec1 double mutant strains have a senescent phenotype similar to that found in tlc1 strains. As observed in tlc1 strains, survivors of senescence in the tel1 mec1 strains occur by a Rad52p-dependent amplification of telomeric and subtelomeric repeats. In addition, we find that strains with both tel1 and tlc1 mutations have a delayed loss of cell viability compared to strains with the single tlc1 mutation. This result argues that the role of Tel1p in telomere maintenance is not solely a direct activation of telomerase.  相似文献   

15.
Background information. In budding yeast, the loss of either telomere sequences (in telomerase‐negative cells) or telomere capping (in mutants of two telomere end‐protection proteins, Cdc13 and Yku) lead, by distinct pathways, to telomeric senescence. After DNA damage, activation of Rad53, which together with Chk1 represents a protein kinase central to all checkpoint pathways, normally requires Rad9, a checkpoint adaptor. Results. We report that in telomerase‐negative (tlc1Δ) cells, activation of Rad53, although diminished, could still take place in the absence of Rad9. In contrast, Rad9 was essential for Rad53 activation in cells that entered senescence in the presence of functional telomerase, namely in senescent cells bearing mutations in telomere end‐protection proteins (cdc131 yku70Δ). In telomerase‐negative cells deleted for RAD9, Mrc1, another checkpoint adaptor previously implicated in the DNA replication checkpoint, mediated Rad53 activation. Rad9 and Rad53, as well as other DNA damage checkpoint proteins (Mec1, Mec3, Chk1 and Dun1), were required for complete DNA‐damage‐induced cell‐cycle arrest after loss of telomerase function. However, unexpectedly, given the formation of an active Rad53–Mrc1 complex in tlc1Δ rad9Δ cells, Mrc1 did not mediate the cell‐cycle arrest elicited by telomerase loss. Finally, we report that Rad9, Mrc1, Dun1 and Chk1 are activated by phosphorylation after telomerase inactivation. Conclusions. These results indicate that loss of telomere capping and loss of telomere sequences, both of which provoke telomeric senescence, are perceived as two distinct types of damages. In contrast with the Rad53–Rad9‐mediated cell‐cycle arrest that functions in a similar way in both types of telomeric senescence, activation of Rad53–Mrc1 might represent a specific response to telomerase inactivation and/or telomere shortening, the functional significance of which has yet to be uncovered.  相似文献   

16.
Y Bai  A P Davis  L S Symington 《Genetics》1999,153(3):1117-1130
With the use of an intrachromosomal inverted repeat as a recombination reporter, we have shown that mitotic recombination is dependent on the RAD52 gene, but reduced only fivefold by mutation of RAD51. RAD59, a component of the RAD51-independent pathway, was identified previously by screening for mutations that reduced inverted-repeat recombination in a rad51 strain. Here we describe a rad52 mutation, rad52R70K, that also reduced recombination synergistically in a rad51 background. The phenotype of the rad52R70K strain, which includes weak gamma-ray sensitivity, a fourfold reduction in the rate of inverted-repeat recombination, elevated allelic recombination, sporulation proficiency, and a reduction in the efficiency of mating-type switching and single-strand annealing, was similar to that observed for deletion of the RAD59 gene. However, rad52R70K rad59 double mutants showed synergistic defects in ionizing radiation resistance, sporulation, and mating-type switching. These results suggest that Rad52 and Rad59 have partially overlapping functions and that Rad59 can substitute for this function of Rad52 in a RAD51 rad52R70K strain.  相似文献   

17.
Def1p is involved in telomere maintenance in budding yeast   总被引:3,自引:0,他引:3  
Saccharomyces Rrm3p, a member of Pif1 5'-3' DNA helicase subfamily, helps replication forks traverse protein-DNA complexes, including the telomere. Here we have identified an Rrm3p interaction protein known to be Def1p. In def1 mutants, telomeres were approximately 200-bp shorter than that in wild-type cells. DEF1 is also required for the stable maintenance of mitochondrial DNA, and the telomere shortening phenotype seen in def1 cells is not a secondary consequence of the mitochondrion defect. A combination of DEF1 null mutation with deletion of EST2 or EST3 resulted in an accelerated senescence phenotype, suggesting that Def1p is not involved in the telomerase recruitment pathway. In the absence of telomerase, cells escape senescence by either amplifying Y' regions or TG-telomeric repeats to generate type I or type II survivors, respectively. Only type I survivors were recovered from both def1Delta est2Delta and def1Delta est3Delta double mutant cells, further suggesting that the function of Def1p in telomere maintenance is specific. Our novel findings of the functions of Def1p in telomere and mitochondria suggested that Def1p plays multiple roles in yeast.  相似文献   

18.
19.
The RAD27/RTH1 gene of Saccharomyces cerevisiae encodes a structural and functional homolog of the 5'-3' exonuclease function of Escherichia coli DNA polymerase I. Four alleles of RAD27 were recovered in a screen for hyper-recombination, a phenotype also displayed by polA mutants of E.coli. All four rad27 mutants showed similar high levels of mitotic recombination, but varied in their growth rate at various temperatures, and sensitivity to the DNA damaging agent methyl methane sulfonate. Dependence of viability of rad27 strains on recombination was determined by crossing a strain containing a null allele of RAD27 to strains containing a mutation in either the RAD1, RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, MRE11, XRS2 or RAD59 gene. In no case were viable spore products recovered that contained both mutations. Elimination of the non-homologous end-joining pathway did not affect the viability of a rad27 strain. This suggests that lesions generated in the absence of RAD27 must be processed by homologous recombination.  相似文献   

20.
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号