首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have compared the epitopes present in various forms of human secretory component by using a panel of hybridoma-derived antibodies elicited by immunizing mice with free secretory component (FSC) or secretory IgA (sIgA). Enzyme-linked immunosorbent binding assays (ELISA) were used to assess antibody binding to FSC- and SC-containing antigens, including sIgA isolated from milk, reduced and alkylated sIgA, and sIgA assembled in vitro by incubating dimeric IgA with FSC. Immunofluorescence assays were also used to assess binding to a human epithelial tumor cell line (HT29) that expresses secretory component as an integral protein of the plasma membrane. The results can be summarized as follows. 1) Most antibodies from fusions in which sIgA was the immunizing antigen bound preferentially to sIgA. 2) Most antibodies from fusions in which FSC was the immunizing antigen bound preferentially to FSC. 3) Antibodies that bound preferentially to sIgA invariably bound sIgA assembled in vitro; antibodies that bound preferentially to FSC invariably did not. 4) Antibodies that bound readily to both sIgA and FSC were rare in all fusions. 5) The monoclonal antibodies defined at least six classes of epitopes on SC, including epitopes that were a) FSC specific and reduction sensitive, b) FSC specific and reduction insensitive, c) sIgA specific and reduction-sensitive, d) sIgA specific and reduction insensitive, e) shared by FSC and sIgA and reduction-sensitive, and f) shared by FSC and sIgA and reduction-insensitive. 6) Antibodies that mediated intense immunofluorescent staining of secretory component on HT29 cell membranes were rare and constituted a distinct subset of those which recognized epitopes shared by FSC, reduced and alkylated sIgA, and some preparations of native sIgA. Results of these antibody-binding studies indicate that most SC epitopes are not shared by FSC and sIgA. Most SC-related epitopes on sIgA appear to be generated by the physical interaction of SC with dimeric IgA, whereas most epitopes on FSC are masked or altered by this interaction. Finally, epitopes that are shared by membrane SC and FSC and/or sIgA represent a minor and immunochemically distinct subset of epitopes on SC. The high proportion of unique epitopes on the different physical forms of SC suggest that the epitopes of this molecule are highly sensitive to its molecular environment. The monoclonal reagents described here will be useful in studying the structure and function of SC; quantitating FSC, sIgA, and membrane SC; purifying various molecular forms of SC by immunoaffinity chromatography; and localizing SC in human tissues and cultured cells by immunocytochemical techniques.  相似文献   

3.
4.
Secretory component (SC), a glycoprotein with an apparent molecular weight of approximately 80,000, has been isolated from rabbit milk and found to be heterogenous in size and charge. Functionally intact IgA dimer has been dissociated from milk secretory IgA using a chaotropic agent and further purified to homogeneity. The interaction between SC and IgA dimer is a reversible time- and temperature-dependent process. At 23 degrees C, the association rate constant (2.4 x 10(5) M-1 min-1) and the dissociation rate constant (1.8 x 10(-3) min-1) have been measured independently and the affinity constant based on these rates (1.3 x 10(8) M-1) is similar to that calculated from Scatchard plots (1.9 x 10(8) M-1). One class of binding sites has been estimated from Scatchard plots in spite of the observed heterogeneity of SC. The interaction is tighter at low temperatures because the decrease in dissociation rate is greater than the decrease in association rate. The thermodynamic calculations reveal a delta G of -11.0 kcal . mol-1, a delta H of -8.9 kcal . mol-1 and a delta S of +7.0 cal. mol-1 degree-1. The pH range over which interaction occurs is rather large (5 to 8) with no significant differences in apparent Ka.  相似文献   

5.
The arrangement of disulfide bonds joining secretory component (SC) to the alpha chains in secretory IgA was studied by determining the molecular size of the principal fragments resulting from CNBr digestion of secretory dimeric Fc fragments from IgA (Fc)2alpha fragments). In vitro complexes formed by incubating 125I-free SC and myeloma 131I-(Fc)2alpha fragments were isolated by gel filtration and subsequently digested with cyanogen bromide. The CNBr digests of SC-(Fc)2alpha fragments were analyzed by gel filtration in 5 M guanidine. Two principal fragments were obtained, one containing a monomeric Fc fragment from IgA (Fcalpha) associated with SC (m.w. congruent to 110,000) and a second containing the second Fcalpha monomer (m.w. congruent to 50,000) from the dimeric SC-(Fc)2alpha. Similar results were obtained when secretory (Fc)2alpha fragments isolated from native secretory IgA dimer were subjected to CNBr digestion. The data indicate that SC is disulfide bonded to a single monomer subunit in secretory IgA dimer.  相似文献   

6.
The specific quantification of human urinary free secretory component (FSC), secretory IgA (SIgA) and total IgA using ELISA has been hampered by mutual interferences of these three molecules. Using affinity chromatographically purified antisera an attempt was therefore made to reduce these interferences without necessitating further assay steps. FSC and total IgA were measured in unprocessed urine by means of anti-FSC and anti-IgA as well as alkaline phosphatase-coupled anti-FSC or anti-IgA antisera. SIgA was determined using anti-IgA as well as alkaline phosphatase-coupled anti-FSC. Nonsecretory urinary IgA was calculated from the measured SIgA and total IgA. The mutual interferences of FSC, SIgA or nonsecretory IgA in the three assay systems were low and not relevant for normal samples. Normal urinary concentrations were: FSC 344 +/- (SD) 208 ng/ml (n = 120), SIgA 1,874 +/- 1,133 ng/ml (n = 123) and nonsecretory IgA, depending on the way of standardization, 712 +/- 699 (n = 56) or 878 +/- 732 ng/ml (n = 51). SIgA excretion increased with age. Lower urinary SIgA as well as total and nonsecretory IgA levels were observed in males as compared to females. No correlation evolved between the hormonal status of women and the excretion of FSC, SIgA or IgA. In IgA-deficient patients virtually no nonsecretory IgA or SIgA was detected in the urine while the FSC concentration was in the normal range.  相似文献   

7.
A homologue of a free secretory component (SC) was identified in chicken intestinal secretion by criteria based on its antigenic relationship with intestinal secretory IgA (SIgA), molecular size, sugar content, and electrophoretic mobility, as well as its elution characteristic from ion-exchange chromatography. SC was obtained in a form free from IgA from the intestinal secretion by salting out and DEAE chromatography, followed by density ultracentrifuguation or Sephadex G-200 gel-filtration. However, the free SC revealed some antigenic deficiency when compared to bound SC of intestinal SIgA and showed a failure of binding to serum-type-polymeric IgA of biliary IgA in vitro. Several kinds of chicken external secretions were examined for detection of SC and immunoglobulin classes of IgG, IgA, and IgM. In spite of the wide distribution of immunoglobulins in the external secretions, SC antigen could be detected only in intestinal secretion. Most IgA in the secretions had a molecular structure of a tetramer of serum-type IgA, lacking in SC and having 17S to 18.5S and 600,000 to 700,000 daltons. On the other hand, IgA in the intestinal secretion showed close similarity to the mammalian SIgA, associated with SC and having 11.2S and 350,000 daltons. Presence of antibody activity in the intestinal IgA to avian reovirus was confirmed by plaque reduction tests.  相似文献   

8.
Rat secretory component binds poorly to rodent IgM.   总被引:2,自引:0,他引:2  
Our previous studies and those of others indicated that human secretory component (SC), the five domain extracellular portion of the poly Ig receptor, binds avidly to both pIgA and IgM. In this study we report that in rodents, SC binds primarily to pIgA. Rat secretory component was isolated from bile and radiolabeled to known specific activity with 125I. Radiolabeled rat SC was incubated with rat and mouse monoclonal proteins for 1 h at room temperature and overnight at 4 degrees D. Binding of 125I-rat SC to Ig was determined in two ways: 1) immunoprecipitation of putative 125I-rat SC-Ig complexes with anti-L chain antibodies; 2) HPLC gel filtration on an analytical TSK 4000 column that separated free 125I-rat SC from 125I-rat SC bound to Ig. Both methods of analysis yielded similar results. Rat and mouse polymeric (p) IgA bound rat SC with high avidity, although the binding activity of the IgM from either species was virtually nil. The number of SC-binding sites on rat polymeric Ig was determined by immunoprecipitation of mixtures of rat pIg with saturating concentrations of 125I-rat SC and yielded values of 1.0 and 0.05 for rat pIgA and IgM, respectively. The significance of these findings with respect to the biologic function of the pIg R in rodents and the nature of the pIg R-binding site on pIg is discussed.  相似文献   

9.
10.
The distribution of non-covalently bound secretory component (SC) on the two subclasses, IgA-f and IgA-g of rabbit secretory IgA (sIgA) was determined; the two subclasses were separated from each other by the use of antibody-immunosorbent columns and were subjected to SDS polyacrylamide gel electrophoresis. No SC appeared to be dissociated from the IgA-f molecules from each of 11 different rabbits; the IgA-g molecules, however, did have SC which was dissociated by SDS. Thus, all of the noncovalently bound SC on rabbit sIgA resides on the IgA-g subclass molecules.  相似文献   

11.
12.
Our study compares the status of human seminal plasma immunoglobulin G (IgG) and IgA secretory component (SC) fucosylation between infertile leukocytospermic and normal, fertile normozoospermic patients. The seminal IgG and SC are decorated with AAL-reactive core fucose, and antennary UEA- and LTA-reactive fucose of Lewisy and Lewisx structures, respectively. However, a correlation between IgG core fucosylation and IgG concentration (r?=??0.52; p?<?0.0003) was observed. The IgG present in leukocytospermic samples is characterized by lower expression of core fucose than in the normal group (0.82?±?0.3 AU and 1.2?±?0.3 AU, respectively; p?<?0.002). In seminal plasma the SC is present in two forms: 78-kDa and 63-kDa. The present study has also shown a higher AAL and LTA specific reactivity of glycans expressed in 63-kDa SC, in comparison to 78-kDa SC, in the normal group. In leukocytospermia, the values of specific lectin reactivity for core fucose, fucose α(1-2)- and α(1-3)- linked, were similar for both SC bands. Moreover, the present study has shown that in leukocytospermic samples the mean concentrations of IgG and S-IgA are twice as high (131.68?±?102.6 mg/l and 36?±?27 mg/l, respectively) as in the normal group (67.68?±?29.2 mg/l; p?<?0.02, and 19?±?18 mg/l, p?<?0.019, respectively). The analysis of IgG and SC fucosylation status and the determination of IgG and S-IgA concentrations in seminal plasma might constitute a valuable diagnosis tools for the evaluation of male infertility associated with leukocytospermia with accompanying inflammation.  相似文献   

13.
Human secretory component has seven putative sites for N-linked glycosylation. From tryptic and Glu-C digests we have isolated peptides encompassing asparagines 65, 72, 117, 168, 403, 451 and 481. Analysis by on line HPLC-electrospray mass spectrometry indicated that these residues were fully glycosylated and that the major carbohydrate moieties were far less diversified in composition than expected. Fast atom bombardment mass spectrometry performed on oligosaccharides released by peptide-N-glycosidase F treatment of fractionated and unfractionated SC digests showed the following glycan compositions: Fuc(2)Hex(5)HexNAc(4), Fuc(3)Hex(5)HexNAc(4), NeuAcFucHex(5)HexNAc(4), NeuAcFuc(2)Hex(5)HexNAc(4), NeuAc(2)Hex(5)HexNAc4 and NeuAc(2)FucHex(5)HexNAc(4). Three of these oligosaccharides are the major carbohydrate moieties in human lactoferrin. A possible biological role of the secretory component glycans in the protection of mucosal surfaces is discussed.  相似文献   

14.
15.
16.
17.
A disulfide-interchange enzyme from rat liver microsomes was found to promote binding in vitro of human free secretory component (SC) to dimeric serum-type IgA containing J chain, as assessed by immune precipitation and gel filtration. This effect was greater withe native than with partially reduced SC. Most of the bound SC was covalently linked, as determined by electrophoresis in polyacrylamide gels in detergent. The enzyme did not promote binding of native or partially reduce SC to IgG, IgA monomer, IgA dimer without J chain, or IgM. In the case of IgM, the enzyme did, however, promote covalent bonding of previously non-covalently linked SC. The results overall suggest that a disulfide-interchange enzyme could play a role in vivo in the cell-associated assembly of secretory IgA by promoting the covalent attachment of SC to a dimer of serum-type IgA and that the J chain in the IgA dimer contributes to the enzyme effect.  相似文献   

18.
Studies were undertaken to determine a possible structural relationship between the secretory component (SC) and the receptor for IgA (Fc alpha R). An IgA-mediated rosetting technique was used to assess the presence of Fc alpha R+ cells in various lymphoid tissues from normal BALB/c mice and mice bearing an IgA plasmacytoma (MOPC 315). Tissues from the MOPC 315-bearing BALB/c mice were found to have a significantly higher percentage of Fc alpha R+ cells; thus, nonadherent spleen cells from MOPC 315-bearing mice were used as a source of Fc alpha R+ cells in these studies. The cells were preincubated with anti-SC and then assayed for the ability of IgA to bind to the Fc alpha R. Antisera to SC from various species inhibited the formation of IgA-mediated rosettes, although preincubation of the Fc alpha R+ cells with antisera directed against other cell surface molecules (e.g., Thy1.2, Lyt1, Lyt2, Fc gamma R, MHC class I and II) or preimmune sera had no significant effect on IgA-mediated rosette formation. Preabsorption of the anti-SC with secretory IgA or with free SC removed the inhibitory effect; preabsorption with myeloma IgA had no effect. These data suggest that SC and Fc alpha R are related serologically and may be structurally related, possible in the IgA-binding region.  相似文献   

19.
20.
Secretory component (SC), an integral membrane protein expressed on basolateral surfaces of secretory epithelial cells, mediates the transport of polymeric Ig (PIg) into external secretions. The ectoplasmic segment of SC is released into secretions either in a free form (FSC) or bound to PIg as secretory IgA or IgM. The topography of human SC in its free and PIgA-bound form was studied by using mAb directed against each form of SC. Competition experiments identified a minimum of nine SC epitopes, one of which was dependent on an N-glycosidic moiety. Three of the polypeptide-derived epitopes were displayed on denatured, reduced, and alkylated SC, whereas the others were fully or partially dependent on the native conformation of SC. Epitopes recognized by the latter class of antibodies were mapped to discrete domains of SC, based on amino acid sequence and antibody-binding analysis of limited proteolytic fragments. One of the mAb (6G11), which was directed against an epitope on domain I of SC, inhibited the binding of FSC to PIgA. Overall, our results provide evidence that a region within domain I, as well as protease-sensitive interdomain regions of FSC, become masked or altered when SC binds to PIgA. Furthermore, the binding of SC to PIgA results in conformational changes, or formation of combinatorial epitopes, involving regions within domains II and III of SC but not domain V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号