首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The 3' splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3' splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site.  相似文献   

3.
Liu X  Mayeda A  Tao M  Zheng ZM 《Journal of virology》2003,77(3):2105-2115
Bovine papillomavirus type 1 (BPV-1) late pre-mRNAs are spliced in keratinocytes in a differentiation-specific manner: the late leader 5' splice site alternatively splices to a proximal 3' splice site (at nucleotide 3225) to express L2 or to a distal 3' splice site (at nucleotide 3605) to express L1. Two exonic splicing enhancers, each containing two ASF/SF2 (alternative splicing factor/splicing factor 2) binding sites, are located between the two 3' splice sites and have been identified as regulating alternative 3' splice site usage. The present report demonstrates for the first time that ASF/SF2 is required under physiological conditions for the expression of BPV-1 late RNAs and for selection of the proximal 3' splice site for BPV-1 RNA splicing in DT40-ASF cells, a genetically engineered chicken B-cell line that expresses only human ASF/SF2 controlled by a tetracycline-repressible promoter. Depletion of ASF/SF2 from the cells by tetracycline greatly decreased viral RNA expression and RNA splicing at the proximal 3' splice site while increasing use of the distal 3' splice site in the remaining viral RNAs. Activation of cells lacking ASF/SF2 through anti-immunoglobulin M-B-cell receptor cross-linking rescued viral RNA expression and splicing at the proximal 3' splice site and enhanced Akt phosphorylation and expression of the phosphorylated serine/arginine-rich (SR) proteins SRp30s (especially SC35) and SRp40. Treatment with wortmannin, a specific phosphatidylinositol 3-kinase/Akt kinase inhibitor, completely blocked the activation-induced activities. ASF/SF2 thus plays an important role in viral RNA expression and splicing at the proximal 3' splice site, but activation-rescued viral RNA expression and splicing in ASF/SF2-depleted cells is mediated through the phosphatidylinositol 3-kinase/Akt pathway and is associated with the enhanced expression of other SR proteins.  相似文献   

4.
5.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

6.
Functional domains of the human splicing factor ASF/SF2.   总被引:36,自引:9,他引:27       下载免费PDF全文
P Zuo  J L Manley 《The EMBO journal》1993,12(12):4727-4737
The human splicing factor ASF/SF2 displays two predominant activities in in vitro splicing assays: (i) it is an essential factor apparently required for all splices and (ii) it is able to switch utilization of alternative 5' splice sites in a concentration-dependent manner. ASF/SF2 is the prototype of a family of proteins typified by the presence of one or two RNP-type RNA binding domains (RBDs) and a region highly enriched in repeating arginine-serine dipeptides (RS regions). Here we describe a functional analysis of ASF/SF2, which defines several regions essential for one, or both, of its two principal activities, and provides insights into how this type of protein functions in splicing. Two isoforms of the protein, which arise from alternative splicing, are by themselves inactive, but each can block the activity of ASF/SF2, thereby functioning as splicing repressors. Some, but not all, mutations in the RS region prevent ASF/SF2 from functioning as an essential splicing factor. However, the entire RS region can be deleted without reducing splice site switching activity, indicating that it is not absolutely required for interaction with other splicing factors. Experiments with deletion and substitution mutants reveal that the protein contains two related, but highly diverged, RBDs, and that both are essential for activity. Each RBD by itself retains the ability to bind RNA, although optimal binding requires both domains.  相似文献   

7.
The integrated human immunodeficiency virus type 1 (HIV-1) genome is transcribed in a single pre-mRNA that is alternatively spliced into more than 40 mRNAs. We characterized a novel bidirectional exonic splicing enhancer (ESE) that regulates the expression of the HIV-1 env, vpu, rev, and nef mRNAs. The ESE is localized downstream of the vpu-, env-, and nef-specific 3' splice site no. 5. SF2/ASF and SRp40 activate the ESE and are required for efficient 3' splice site usage and binding of the U1 snRNP to the downstream 5' splice site no. 4. U1 snRNP binding to the 5' splice site no. 4 is required for splicing of the rev and nef mRNAs and to increase expression of the partially spliced env mRNA. Finally, our results indicate that this ESE is necessary for the recruitment of the U1 snRNP to the 5' splice site no. 4, even when the 5' splice site and the U1 snRNA have been mutated to obtain a perfect complementary match. The ESE characterized here is highly conserved in most viral subtypes.  相似文献   

8.
The equine infectious anemia virus (EIAV) Rev protein (ERev) negatively regulates its own synthesis by inducing alternative splicing of its mRNA. This bicistronic mRNA contains four exons; exons 1 and 2 encode Tat, and exons 3 and 4 encode Rev. When Rev is expressed, exon 3 is skipped to produce an mRNA that contains only exons 1, 2, and 4. The interaction of ERev with its cis-acting RNA response element, the RRE, is also essential for nuclear export of intron-containing viral mRNAs that encode structural and enzymatic gene products. The primary ERev binding site and the manner in which ERev interacts with RNA or cellular proteins to exert its regulatory function have not been defined. We have performed in vitro RNA binding experiments to show that recombinant ERev binds to a 55-nucleotide, purine-rich tract proximal to the 5' splice site of exon 3. Because of its proximity to the 5' splice site and since it contains elements related to consensus exonic splicing enhancer sequences, we asked whether cellular proteins recognize the EIAV RRE. The cellular protein, ASF/SF2, a member of the serine- and arginine-rich family of splicing factors (SR proteins) bound to repeated sequences within the 55-nucleotide RRE region. Electrophoretic mobility shift and UV cross-linking experiments indicated that ERev and SR proteins bind simultaneously to the RRE. Furthermore, in vitro protein-protein interaction studies revealed an association between ERev and SR proteins. These data suggest that EIAV Rev-induced exon skipping observed in vivo may be initiated by simultaneous binding of Rev and SR proteins to the RRE that alter the subsequent assembly or catalytic activity of the spliceosomal complex.  相似文献   

9.
A R Krainer  G C Conway  D Kozak 《Cell》1990,62(1):35-42
SF2 is a 33 kd protein factor required for 5' splice site cleavage and lariat formation during pre-mRNA splicing in HeLa cell extracts. In addition to its essential role in constitutive splicing, SF2 can strongly influence 5' splice site selection. When pre-mRNAs containing multiple cis-competing 5' splice sites are spliced in vitro, high concentrations of purified SF2 promote the use of the 5' splice site closest to the 3' splice site. However, SF2 discriminates properly between authentic and cryptic splice sites. These effects of SF2 on splice site selection may reflect the cellular mechanisms that prevent exon skipping and ensure the accuracy of splicing. In addition, alterations in the concentration or activity of SF2, and of other general splicing factors, may serve to regulate alternative splicing in vivo.  相似文献   

10.
11.
Human pre-mRNA splicing factor SF2/ASF has an activity required for general splicing in vitro and promotes utilization of proximal alternative 5' splice sites in a concentration-dependent manner by opposing hnRNP A1. We introduced selected mutations in the N-terminal RNA recognition motif (RRM) and the C-terminal Arg/Ser (RS) domain of SF2/ASF, and assayed the resulting recombinant proteins for constitutive and alternative splicing in vitro and for binding to pre-mRNA and mRNA. Mutants inactive in constitutive splicing can affect alternative splice site selection, demonstrating that these activities involve distinct molecular interactions. Specific protein-RNA contact mediated by Phe56 and Phe58 in the RNP-1 submotif of the SF2/ASF RRM are essential for constitutive splicing, although they are not required for RRM-mediated binding to pre-mRNA. The RS domain is also required for constitutive splicing activity and both Arg and Ser residues are important. Analysis of domain deletion mutants demonstrated strong synergy between the RRM and a central degenerate RRM repeat in binding to RNA. These two domains are sufficient for alternative splicing activity in the absence of an RS domain.  相似文献   

12.
13.
In the NL4-3 strain of human immunodeficiency virus type 1 (HIV-1), regulatory elements responsible for the relative efficiencies of alternative splicing at the tat, rev, and the env/nef 3' splice sites (A3 through A5) are contained within the region of tat exon 2 and its flanking sequences. Two elements affecting splicing of tat, rev, and env/nef mRNAs have been localized to this region. First, an exon splicing silencer (ESS2) in NL4-3, located approximately 70 nucleotides downstream from the 3' splice site used to generate tat mRNA, acts specifically to inhibit splicing at this splice site. Second, the A4b 3' splice site, which is the most downstream of the three rev 3' splice sites, also serves as an element inhibiting splicing at the env/nef 3' splice site A5. These elements are conserved in some but not all HIV-1 strains, and the effects of these sequence changes on splicing have been investigated in cell transfection and in vitro splicing assays. SF2, another clade B virus and member of the major (group M) viruses, has several sequence changes within ESS2 and uses a different rev 3' splice site. However, splicing is inhibited by the two elements similarly to NL4-3. As with the NL4-3 strain, the SF2 A4b AG dinucleotide overlaps an A5 branchpoint, and thus the inhibitory effect may result from competition of the same site for two different splicing factors. The sequence changes in ANT70C, a member of the highly divergent outlier (group O) viruses, are more extensive, and ESS2 activity in tat exon 2 is not present. Group O viruses also lack the rev 3' splice site A4b, which is conserved in all group M viruses. Mutagenesis of the most downstream rev 3' splice site of ANT70C does not increase splicing at A5, and all of the branchpoints are upstream of the two rev 3' splice sites. Thus, splicing regulatory elements in tat exon 2 which are characteristic of most group M HIV-1 strains are not present in group O HIV-1 strains.  相似文献   

14.
In this work we report the identification of a strong SF2/ASF binding site within exon 7 of the human fibrinogen Bbeta-chain gene (FGB). Its disruption in the wild-type context has no effect on exon recognition. However, when the mutation IVS7 + 1G>T--initially described in a patient suffering from congenital afibrinogenemia--is present, this SF2/ASF binding site is critical for cryptic 5'ss (splice site) definition. These findings, besides confirming and extending previous results regarding the effect of SF2/ASF on cryptic splice site activation, identify for the first time an enhancer sequence in the FGB gene specific for cryptic splice site usage. Taken together, they suggest the existence of a splicing-regulatory network that is normally silent in the FGB natural splicing environment but which can nonetheless influence splicing decisions when local contexts allow. On a more general note, our conclusions have implications for the evolution of alternative splicing processes and for the development of methods to control aberrant splicing in the context of disease-causing mutations.  相似文献   

15.
16.
The mammalian thyroid hormone receptor gene c-erbAalpha gives rise to two mRNAs that code for distinct isoforms, TRalpha1 and TRalpha2, with antagonistic functions. Alternative processing of these mRNAs involves the mutually exclusive use of a TRalpha1-specific polyadenylation site or TRalpha2-specific 5' splice site. A previous investigation of TRalpha minigene expression defined a critical role for the TRalpha2 5' splice site in directing alternative processing. Mutational analysis reported here shows that purine residues within a highly conserved intronic element, SEa2, enhance splicing of TRalpha2 in vitro as well as in vivo. Although SEalpha2 is located within the intron of TRalpha2 mRNA, it activates splicing of a heterologous dsx pre-mRNA when located in the downstream exon. Competition with wild-type and mutant RNAs indicates that SEalpha2 functions by binding trans-acting factors in HeLa nuclear extract. Protein-RNA crosslinking identifies several proteins, including SF2/ASF and hnRNP H, that bind specifically to SEalpha2. SEalpha2 also includes an element resembling a 5' splice site consensus sequence that is critical for splicing enhancer activity. Mutations within this pseudo-5' splice site sequence have a dramatic effect on splicing and protein binding. Thus SEa2 and its associated factors are required for splicing of TRalpha2 pre-mRNA.  相似文献   

17.
The rat beta-tropomyosin gene encodes two tissue-specific isoforms that contain the internal, mutually exclusive exons 6 (nonmuscle/smooth muscle) and 7 (skeletal muscle). We previously demonstrated that the 3' splice site of exon 6 can be activated by introducing a 9-nt polyuridine tract at its 3' splice site, or by strengthening the 5' splice site to a U1 consensus binding site, or by joining exon 6 to the downstream common exon 8. Examination of sequences within exons 6 and 8 revealed the presence of two purine-rich motifs in exon 6 and three purine-rich motifs in exon 8 that could potentially represent exonic splicing enhancers (ESEs). In this report we carried out substitution mutagenesis of these elements and show that some of them play a critical role in the splice site usage of exon 6 in vitro and in vivo. Using UV crosslinking, we have identified SF2/ASF as one of the cellular factors that binds to these motifs. Furthermore, we show that substrates that have mutated ESEs are blocked prior to A-complex formation, supporting a role for SF2/ASF binding to the ESEs during the commitment step in splicing. Using pre-mRNA substrates containing exons 5 through 8, we show that the ESEs within exon 6 also play a role in cooperation between the 3' and 5' splice sites flanking this exon. The splicing of exon 6 to 8 (i.e., 5' splice site usage of exon 6) was enhanced with pre-mRNAs containing either the polyuridine tract in the 3' splice site or consensus sequence in the 5' splice site around exon 6. We show that the ESEs in exon 6 are required for this effect. However, the ESEs are not required when both the polyuridine and consensus splice site sequences around exon 6 were present in the same pre-mRNA. These results support and extend the exon-definition hypothesis and demonstrate that sequences at the 3' splice site can facilitate use of a downstream 5' splice site. In addition, the data support the hypothesis that ESEs can compensate for weak splice sites, such as those found in alternatively spliced exons, thereby providing a target for regulation.  相似文献   

18.
SR proteins are essential splicing factors involved in the use of both constitutive and alternative exons. We previously showed that the SR proteins SRp20 and ASF/SF2 have antagonistic activities on SRp20 pre-mRNA splicing. SRp20 activates exon 4 recognition in its pre-mRNA, whereas ASF/SF2 inhibits this recognition. In experiments aimed at testing the specificity of SRp20 and ASF/SF2 for exon 4 splicing regulation, we show here that this specificity lies in the RNA binding domains of SRp20 and ASF/SF2 and not in the RS domains. Surprisingly, a deletion of 14 amino acids at the end of ASF/SF2-RBD2 converts ASF/SF2 from an inhibitor to an activator of exon 4 splicing. We found that ASF3 also inhibits exon 4 recognition, thus acting similarly to ASF/SF2, while SC35 activates a cryptic 5' splice site downstream of exon 3 and, in doing so, represses exon 4 use. In contrast, Tra2 and the SR proteins 9G8 and SRp40 do not appear to affect exon 4 splicing.  相似文献   

19.
20.
The first component known to recognize and discriminate among potential 5' splice sites (5'SSs) in pre-mRNA is the U1 snRNP. However, the relative levels of U1 snRNP binding to alternative 5'SSs do not necessarily determine the splicing outcome. Strikingly, SF2/ASF, one of the essential SR protein-splicing factors, causes a dose-dependent shift in splicing to a downstream (intron-proximal) site, and yet it increases U1 snRNP binding at upstream and downstream sites simultaneously. We show here that hnRNP A1, which shifts splicing towards an upstream 5'SS, causes reduced U1 snRNP binding at both sites. Nonetheless, the importance of U1 snRNP binding is shown by proportionality between the level of U1 snRNP binding to the downstream site and its use in splicing. With purified components, hnRNP A1 reduces U1 snRNP binding to 5'SSs by binding cooperatively and indiscriminately to the pre-mRNA. Mutations in hnRNP A1 and SF2/ASF show that the opposite effects of the proteins on 5'SS choice are correlated with their effects on U1 snRNP binding. Cross-linking experiments show that SF2/ASF and hnRNP A1 compete to bind pre-mRNA, and we conclude that this competition is the basis of their functional antagonism; SF2/ASF enhances U1 snRNP binding at all 5'SSs, the rise in simultaneous occupancy causing a shift in splicing towards the downstream site, whereas hnRNP A1 interferes with U1 snRNP binding such that 5'SS occupancy is lower and the affinities of U1 snRNP for the individual sites determine the site of splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号