首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root infection in susceptible host species is initiated predominantly in the zone of elongation, whereas the remainder of the root is resistant. Nectria haematococca infection of pea (Pisum sativum) was used as a model to explore possible mechanisms influencing the localization of root infection. The failure to infect the root tip was not due to a failure to induce spore germination at this site, suppression of pathogenicity genes in the fungus, or increased expression of plant defense genes. Instead, exudates from the root tip induce rapid spore germination by a pathway that is independent of nutrient-induced germination. Subsequently, a factor produced during fungal infection and death of border cells at the root apex appears to selectively suppress fungal growth and prevent sporulation. Host-specific mantle formation in response to border cells appears to represent a previously unrecognized form of host-parasite relationship common to diverse species. The dynamics of signal exchange leading to mantle development may play a key role in fostering plant health, by protecting root meristems from pathogenic invasion.  相似文献   

2.
Extracellular proteins in pea root tip and border cell exudates   总被引:1,自引:0,他引:1       下载免费PDF全文
Newly generated plant tissue is inherently sensitive to infection. Yet, when pea (Pisum sativum) roots are inoculated with the pea pathogen, Nectria haematococca, most newly generated root tips remain uninfected even though most roots develop lesions just behind the tip in the region of elongation. The resistance mechanism is unknown but is correlated spatially with the presence of border cells on the cap periphery. Previously, an array of >100 extracellular proteins was found to be released while border cell separation proceeds. Here we report that protein secretion from pea root caps is induced in correlation with border cell separation. When this root cap secretome was proteolytically degraded during inoculation of pea roots with N. haematococca, the percentage of infected root tips increased from 4% +/- 3% to 100%. In control experiments, protease treatment of conidia or roots had no effect on growth and development of the fungus or the plant. A complex of >100 extracellular proteins was confirmed, by multidimensional protein identification technology, to comprise the root cap secretome. In addition to defense-related and signaling enzymes known to be present in the plant apoplast were ribosomal proteins, 14-3-3 proteins, and others typically associated with intracellular localization but recently shown to be extracellular components of microbial biofilms. We conclude that the root cap, long known to release a high molecular weight polysaccharide mucilage and thousands of living cells into the incipient rhizosphere, also secretes a complex mixture of proteins that appear to function in protection of the root tip from infection.  相似文献   

3.
F Wen  Y Zhu    M C Hawes 《The Plant cell》1999,11(6):1129-1140
Expression of an inducible gene with sequences common to genes encoding pectin methylesterase (PME) was found to be tightly correlated, both spatially and temporally, with border cell separation in pea root caps. Partial inhibition of the gene's expression by antisense mRNA in transgenic pea hairy roots prevented the normal separation of root border cells from the root tip into the external environment. This phenotype was correlated with an increase in extracellular pH, reduced root elongation, and altered cellular morphology. The translation product of the gene exhibited PME activity in vitro. These results are consistent with the long-standing hypothesis that the demethylation of pectin by PME plays a key role in cell wall metabolism.  相似文献   

4.
We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap.  相似文献   

5.

Aims

Most plants produce a root tip extracellular matrix that includes viable border cell populations programmed to disperse into soil. Like neutrophils, border cells export structures that trap pathogens and prevent root tip infection. Border cells also trap metals. The goal of this study was to determine if border cells trap Pb.

Methods

Border cell responses to Pb were observed microscopically. Border cell impact on Pb-induced injury to roots was assessed using root growth assays. Pb removal from solution was measured using inductively coupled plasma mass spectrometry (ICP-MS). Speciation of Pb associated with border cells was evaluated by synchrotron X-ray absorption spectroscopy (XAS).

Results

Increased border cell trap size and number occurred within minutes in response to Pb but not silicon (Si). Transient immersion of root tips into Pb after border cells were removed resulted in growth inhibition. Immersion of root tips and border cells into Pb solution resulted in significant removal of Pb. Si levels in the presence of root tips remained unchanged. The Pb speciation, measured with Pb LIII XAS, altered when reacted with border cells, indicating that direct binding by extracellular traps occurred.

Conclusions

Border cells can trap Pb and prevent damage to the root tip.
  相似文献   

6.
Expression of transferred genes during hairy root development in pea   总被引:4,自引:0,他引:4  
Root border cell development and expression of reporter genes were evaluated in transgenic pea hairy roots. Successful induction of hairy roots in pea is conditioned by bacterial strain and plant genotype, as well as by developmental and environmental factors. Morphological changes sometimes occur when hairy roots are transferred from infected plants to tissue culture media, but such changes are confined to specific clones. Expression of reporter genes under the control of promoters from bean (Phaseolus vulgaris L.) stress genes encoding phenylalanine ammonia lyase and chalcone synthase were evaluated. Expression patterns vary between hairy roots taken directly from infected plants, and those grown in culture; most hairy roots taken from infected plants exhibit expression throughout all tissues, whereas expression in cultured hairy roots is most often localized to specific tissues. Patterns of expression that occur during different stages of hairy root development are very similar to those observed in transgenic plants expressing the same fusion genes. Border cell separation and release in hairy roots is normal, and expression of glucuronidase in border cells of some transgenic roots resulted in development of bright blue single cells. Cultured hairy roots should provide a very useful model for studying the effect of defined changes in root border cells on microbial associations with roots of this important legume.Abbreviations YEM yeast extract-mannitol - GUS glucuronidase - PAL phenylalanine ammonium lyase - CHS chalcone syntase  相似文献   

7.
Mechanics of root growth   总被引:4,自引:1,他引:3  
Summary A model is developed for the rate of elongation of a root tip in terms of the balance of pressures acting on the root. Differentials of this equation give expressions for the changes in root elongation rate with respect to soil water potential and soil mechanical resistance. The model predicts that root cells osmoregulate against both water stress and soil mechanical resistance with predicts that root cells osmoregulate against both water stress and soil mechanical resistance with similar efficiencies which are less than 100%. Analysis of published data leads to the conclusion that root tips of pea osmoregulate with 70% efficiency. A working equation is developed for the elongation rate of roots in conditions of combined water stress and mechanical resistance.  相似文献   

8.
The study was focused on localization of "free" phenolic compounds in pea Pisum sativum L. seedling roots grown at 22 and 8 degrees C 24 h after their inoculation with Rhizobium leguminosarum bv. viceae bacteria. A comparison of phenolic compound distribution along the root in root tissues, and results of observation of root hair development on the root surface, response of root hairs to inoculation, manifesting itself in various deformation degree (bends, twists, ect.) enabled us to reveal differences between roots grown at different temperatures. These differences are basically referred to a sector localized 0-5 mm away from the root tip containing meristematic and extending cells. A distribution of phenolic compounds in sectors with root hairs responding to inoculation by various degrees of contortion practically did not depend on the temperature of plant growth. The evidence provided in the course of this work enabled us to suggest that inhibition of pea root infection at low temperature is caused by decelerated growth processes characteristic of both the root itself and root hairs, as well by a slow increase in the root hair zone.  相似文献   

9.
Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.  相似文献   

10.
Dwarf mutants of pea (Pisum sativum), with impaired gibberellin (GA) biosynthesis in the shoot, were studied to determine whether the roots of these genotypes had altered elongation and GA levels. Mutations na, lh-2, and ls-1 reduced GA levels in root tips and taproot elongation, although in lh-2 and ls-1 roots the reduction in elongation was small (less than 15%). The na mutation reduced taproot length by about 50%. The roots of na plants elongated in response to applied GA(1) and recombining na with mutation sln (which blocks GA catabolism) increased GA(1) levels in root tips and completely restored normal root development. In shoots, Mendel's le-1 mutation impairs the 3beta-hydroxylation of GA(20) to the bioactive GA(1), resulting in dwarfism. However, GA(1) and GA(20) levels were normal in le-1 roots, as was root development. The null mutation le-2 also did not reduce root GA levels or elongation. The results support the theory that GAs are important for normal root elongation in pea, and indicate that a 3beta-hydroxylase gene other than LE operates in pea roots.  相似文献   

11.
Here we describe the use of Pisum sativum L. as a model system to measure how short-term treatment of root tips with soluble metabolites can influence root growth and release of root exudates. The results revealed that even a 3-minute exposure of root tips to metabolites normally released from roots into the rhizosphere (e.g. rhamnose, ferulic acid, salicylic acid) can significantly influence root growth without affecting production of border cells and associated exudates. Conversely, products including caffeine, saccharide lactone, and pisatin alter production of border cells, without affecting root growth. Understanding how root-derived and exogenous metabolites can selectively impact root function may yield benefits in crop production, especially in greenhouse agriculture systems where growing roots can be exposed to a significant accumulation of plant exudates.  相似文献   

12.
Y. Zhu  F. Wen  X. Zhao  M. C. Hawes 《Plant and Soil》2004,265(1-2):47-59
A genomic clone of a pea pectinmethylesterase encoding gene, rcpme1, was isolated; the promoter region was found to include regions of homology to phenylalanine ammonia lyase (PAL) and nodulin gene promoters. Agrobacterium rhizogenes mediated hairy roots were used for rcpme1 expression and functional analysis in pea. Patterns of rcpme1 expression in cultured hairy roots, measured using uidA encoding -glucuronidase (GUS) as a reporter gene, were distinct from patterns which occur in normal pea roots. No reporter gene expression occurred in transgenic Arabidopsis thaliana, whose roots do not produce border cells. Border cell number from transgenic hairy roots expressing rcpme1 anti-sense mRNA under the control of its 2.75 kb 5 flanking sequence was reduced by > 50%. Nodulation genes of Rhizobium leguminosarum were used as a marker to document that roots with reduced production of border cells and other root cap exudates have a corresponding reduction in levels of biologically active signal molecules. Direct measurements were used to confirm that most of the exudate harvested from young, unwounded roots of normal pea plants is derived from the root tip region where rcpme1 is expressed. The potential application of the rcpme1 gene as a molecular marker for root exudate production is discussed.  相似文献   

13.
Pea (Pisum sativum L. cv. Alaska) primary roots were exposed to flooding after growth for 4 or 5 d at 25 degrees C under relatively dry conditions. Flooding after 4 d growth reduced, but did not stop, primary root growth, and cavities caused by degradation of central vascular cells were typically found from 10-60 mm from the tips. Flooding after 5 d stopped primary root growth and caused cell death in the tips, and vascular cavities formed that typically were 20-60 mm from the tips of the roots. Degradation of root tip cells in 5-day-roots was very rapid and began in the elongation zone and later in the apical zone. Root tips discolored, narrowed or curled before growth arrest. The mitotic indices of 5-day-root tips were suppressed by the flooding treatment. A few mitotic figures were observed in roots treated with flooding after 4 d growth. Affected cells had condensed nuclei, but cytoplasms appeared to be normal in the early stages of cell degradation. Later these cells became very vacuolated. The relationship of flooding to root growth, vascular cavity formation, and the morphology of pea primary roots is described with regard to the ability to resist flooding stress.  相似文献   

14.
Etiolated pea seedlings ( Pisum sativum L. cv. Weibull's Marma) were used to investigate the effects of exogenous cytokinins on root growth. Benzylaminopurine (BAP) added to the growth solution inhibited the elongation and formation of lateral roots and stimulated swelling of the root tips. Similar effects were obtained with zeatin. The effects were obtained over a wide concentration range down to 0.01 μ M . Growth responses appeared only after treatment for several hours, and the duration of treatment had an important influence on the degree of the effects. BAP caused a moderate increase in ethylene production as measured in excised 10-mm-long root tips. Lowering ethylene production by treatment with cobalt ions counteracted both the inhibition and swelling caused by BAP. Treatment with silver ions also reversed the effect to some extent, indicating that ethylene is involved in the response of the roots to BAP. To further study the involvement of the increased ethylene production in the elongation and swelling response, the effects were compared with those obtained after application of 1-aminocyclopropane-1-carboxylic acid (ACC) in relation to the ethylene produced from this compound. This comparison showed that the increase in ethylene production caused by BAP was too low to explain the response of the roots. However, ACC treatment caused a considerable lowering of the content of indole-3-acetic acid (IAA) in the root tips, whereas BAP did not; instead, BAP increased the amount of IAA per root tip. It is concluded that cytokinins influence growth processes in roots via several mechanisms. A synergistic interaction between endogenous IAA, maintained at a high level by the cytokinin treatment, and the increased ethylene levels appears to explain most of the cytokinin effects during the first day of treatment.  相似文献   

15.
以2个荞麦(Fygopyrum esculentum Moench)基因型‘江西荞麦’(耐性)和‘内蒙荞麦’(敏感)为材料,采用悬空培养(保持边缘细胞附着于根尖和去除根尖边缘细胞),研究边缘细胞对根尖铝毒的防护效应以及对细胞壁多糖组分的影响。结果表明,铝毒抑制荞麦根系伸长,导致根尖Al积累。去除边缘细胞的根伸长抑制率和根尖Al含量高于保留边缘细胞的根。去除边缘细胞使江西荞麦和内蒙荞麦根尖的酸性磷酸酶(APA)活性显著升高,前者在铝毒下增幅更大。同时,铝毒胁迫下去除边缘细胞的根尖果胶甲酯酶(PME)活性和细胞壁果胶、半纤维素1、半纤维素2含量显著高于保留边缘细胞的酶活性和细胞壁多糖含量。表明边缘细胞对荞麦根尖的防护效应,与其阻止Al的吸收,降低根尖细胞壁多糖含量及提高酸性磷酸酶活性有关,以此缓解Al对根伸长的抑制。  相似文献   

16.
The role of root border cells in plant defense   总被引:33,自引:0,他引:33  
The survival of a plant depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Perhaps because of the root tip's vital role in plant health, it is ensheathed by large populations of detached somatic cells - root 'border' cells - which have the ability to engineer the chemical and physical properties of the external environment. Of particular significance, is the production by border cells of specific chemicals that can dramatically alter the behavior of populations of soilborne microflora. Molecular approaches are being used to identify and manipulate the expression of plant genes that control the production and the specialized properties of border cells in transgenic plants. Such plants can be used to test the hypothesis that these unusual cells act as a phalanx of biological 'goalies', which neutralize dangers to newly generated root tissue as the root tip makes its way through soil.  相似文献   

17.
Inhibition of growth and development of root border cells in wheat by Al   总被引:18,自引:0,他引:18  
The production and development of border cells vary with genotype, and they are released in wheat at an earlier stage of root development than other species studied so far. No significant difference was observed in the maximum number of border cells between Al-tolerant (Atlas 66) and Al-sensitive (Scout 66) cultivars in the absence of Al treatment. Al seriously inhibited the production and release of border cells, resulting in clumping of border cells in Scout 66, but less clustering in Atlas 66. The number of border cells released from roots treated with Al is significantly less than that from roots grown without Al treatment. Al treatment induced the death of detached border cells in vitro and they were killed by a 20-h treatment with 25 µ m Al. No significant difference in survival percentage of detached border cells was observed between Atlas 66 and Scout 66, regardless of the presence or absence of Al. The removal of border cells from root tips of both Atlas 66 and Scout 66 enhanced the Al-induced inhibition of root elongation concomitant with increased Al accumulation in the root. These results suggest that border cells adhered to the root tips play a potential role in the protection of root from Al injury in wheat.  相似文献   

18.
The ability of Rhizobium leguminosarum 248 to attach to developing Pisum sativum root hairs was investigated during various phases of bacterial growth in yeast extract-mannitol medium. Direct cell counting revealed that growth of the rhizobia transiently stopped three successive times during batch culture in yeast extract-mannitol medium. These interruptions of growth, as well as the simultaneous autoagglutination of the bacteria, appeared to be caused by manganese limitation. Rhizobia harvested during the transient phases of growth inhibition appeared to have a better attachment ability than did exponentially growing rhizobia. The attachment characteristics of these manganese-limited rhizobia were compared with those of carbon-limited rhizobia (G. Smit, J. W. Kijne, and B. J. J. Lugtenberg, J. Bacteriol. 168:821-827, 1986, and J. Bacteriol. 169:4294-4301, 1987). In contrast to the attachment of carbon-limited cells, accumulation of manganese-limited rhizobia (cap formation) was already in full progress after 10 min of incubation; significantly delayed by 3-O-methyl-D-glucose, a pea lectin haptenic monosaccharide; partially resistant to sodium chloride; and partially resistant to pretreatment of the bacteria with cellulase. Binding of single bacteria to the root hair tips was not inhibited by 3-O-methyl-D-glucose. Whereas attachment of single R. leguminosarum cells to the surface of pea root hair tips seemed to be similar for both carbon- and manganese-limited cells, the subsequent accumulation of manganese-limited rhizobia at the root hair tips is apparently accelerated by pea lectin molecules. Moreover, spot inoculation tests with rhizobia grown under various culture conditions indicated that differences in attachment between manganese- and carbon-limited R. leguminosarum cells are correlated with a significant difference in infectivity in that manganese-limited rhizobia, in contrast to carbon-limited rhizobia, are infective. This growth-medium-dependent behavior offers and explanation for the seemingly conflicting data on the involvement of host plant lectins in attachment of rhizobia to root hairs of leguminous plants. Sym plasmid-borne genes do not play a role in manganese-limitation-induced attachment of R. leguminosarum.  相似文献   

19.
The lectin on the surface of 4- and 5-dold pea roots was located by the use of indirect immunofluorescence. Specific antibodies raised in rabbits against pea seed isolectin 2, which crossreact with root lectins, were used as primary immunoglobulins and were visualized with fluorescein- or tetramethylrhodamine-isothiocyanate-labeled goat antirabbit immunoglobulin G. Lectin was observed on the tips of newly formed, growing root hairs and on epidermal cells located just below the young hairs. On both types of cells, lectin was concentrated in dense small patches rather than uniformly distributed. Lectin-positive young hairs were grouped opposite the (proto)xylematic poles. Older but still-elongating root hairs presented only traces of lectin or none at all. A similar pattern of distribution was found in different pea cultivars, as well as in a supernodulating and a non-nodulating pea mutant. Growth in a nitrate concentration which inhibits nodulation did not affect lectin distribution on the surface of pea roots of this age. We tested whether or not the root zones where lectin was observed were susceptible to infection by Rhizobium leguminosarum. When low inoculum doses (consisting of less than 106 bacteria·ml-1) were placed next to lectin-positive epidermal cells and on newly formed root hairs, nodules on the primary roots were formed in 73% and 90% of the plants, respectively. Only a few plants showed primary root nodulation when the inoculum was placed on the root zone where lectin was scarce or absent. These results show that lectin is present at those sites on the pea root that are susceptible to infection by the bacterial symbiont.Abbreviations FITC fluorescein isothiocyanate - TRIC tetramethylrhodamine isothiocyanate  相似文献   

20.
Development of tobacco root systems was characterized under controlled environmental conditions by use of morphometric root analysis. According to the classification scheme of this system, roots terminating in apical meristems are defined as first-order roots. Elements of second-order roots begin where two first-order roots merge, and so forth. Growth of root systems was similar for susceptible and resistant tobacco cultivars in nonautoclaved and autoclaved soils. During 15 days of growth subsequent to transplanting of 2-week-old plants, relative multiplication and extension rates of first-order and second-order roots were constant. Apparent unit extension rates of first-order and second-order root elements increased through 15 days of root system growth. Classification of tobacco root systems by the morphometric scheme provided a useful means of partitioning susceptibility of tissues to infection byPhytophthora parasitica var.nicotianae. Zoospores applied at the tips of first-order roots were most successful in causing infections; 73.3% of the roots inoculated with 16 zoospores per root tip became infected. Percentages of infections after inoculation of first-order root tissues 2 cm behind root tips or after inoculation of second-order roots were 10 and 4.3%, respectively.Florida Agricultural Experiment Station, Journal Series Paper 8106.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号