首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
Polysialic acid (PSA) is a dynamically regulated posttranslational modification of the neural cell adhesion molecule (NCAM), which modulates NCAM binding functions. PSA biosynthesis is catalyzed by two polysialyltransferases, ST8SiaII and ST8SiaIV. The catalytic mechanisms of these enzymes are unknown. In Chinese hamster ovary cells, ST8SiaIV is responsible for PSA expression. In the complementation group 2A10, the ST8SiaIV gene is disrupted. Investigating the molecular defects in this complementation group, seven clones with missense mutations in ST8SiaIV were found. Mutations cause replacement of amino acids that are highly conserved in alpha2,8-sialyltransferases. To verify the physiological relevance of identified mutations, identical amino acid substitutions were introduced into epitope-tagged variants of hamster ST8SiaIV and murine ST8SiaII and recombinant proteins were tested in vivo and in vitro. None of these constructs reconstituted PSA synthesis in 2A10 cells, although the proteins were expressed and with the exception of the cysteine variants ST8SiaIV-C356F and ST8SiaII-C371F correctly targeted to the Golgi apparatus. Interestingly, two mutations (ST8SiaIV-R277G and -M333V and the corresponding mutants ST8SiaII-R292G and -M348V) could be partially rescued if tested in vitro. Although these mutants were negative for autopolysialylation, partial reconstitution of both auto- and NCAM polysialylation was achieved in the presence of NCAM. The data presented in this study suggest a functional link between auto- and NCAM polysialylation.  相似文献   

2.
Polysialic acid represents a unique posttranslational modification of the neural cell adhesion molecule (NCAM). It is built as a homopolymer of up to 150 molecules of alpha 2-8-linked sialic acids on N-glycans of the fifth immunoglobulin-like domain of NCAM. Besides its role in cell migration and axonal growth during development, polysialic acids are closely related to tumor malignancy as they are linked to the malignant potential of several tumors, such as undifferentiated neuroblastoma. Polysialic acid expression is significantly more frequent in high-grade tumors than in low-grade tumors. It is synthesized in the Golgi apparatus by the activity of two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV. Interestingly, polysialylation of tumors is not equally synthesized by both polysialyltransferases. It has been shown that especially the ST8SiaII gene is not expressed in some normal tissue, but is strongly expressed in tumor tissue. Here we summarize some knowledge on the role of polysialic acid in cell migration and tumor progression and present novel evidence that interfering with polysialylation using unnatural sialic acid precursors decreases the migration of neuroblastoma cells.  相似文献   

3.
Polysialic acid (polySia), an alpha2,8-linked polymer of N-acetylneuraminic acid, represents an essential regulator of neural cell adhesion molecule (NCAM) functions. Two polysialyltransferases, ST8SiaII and ST8SiaIV, account for polySia synthesis, but their individual roles in vivo are still not fully understood. Previous in vitro studies defined differences between the two enzymes in their usage of the two NCAM N-glycosylation sites affected and suggested a synergistic effect. Using mutant mice, lacking either enzyme, we now assessed in vivo the contribution of ST8SiaII and ST8SiaIV to polysialylation of NCAM. PolySia-NCAM was isolated from mouse brains and trypsinized, and polysialylated glycopeptides as well as glycans were analyzed in detail. Our results revealed an identical glycosylation and almost complete polysialylation of N-glycosylation sites 5 and 6 in polySia-NCAM irrespective of the enzyme present. The same sets of glycans were substituted by identical numbers of polySia chains in vivo, the length distribution of which, however, differed with the enzyme setting. Expression of ST8SiaIV alone led to higher amounts of short polySia chains and gradual decrease with length, whereas exclusive action of ST8SiaII evoked a slight reduction in long polySia chains only. These variations were most pronounced at N-glycosylation site 5, whereas the polysialylation pattern at N-glycosylation site 6 did not differ between NCAM from wild-type and ST8SiaII- or ST8SiaIV-deficient mice. Thus, our fine structure analyses suggest a comparable quality of polysialylation by ST8SiaII and ST8SiaIV and a distinct synergistic action of the two enzymes in the synthesis of long polySia chains at N-glycosylation site 5 in vivo.  相似文献   

4.
5.
The post-translational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) represents a remarkable example of dynamic modulation of homo- and heterophilic cell interactions by glycosylation. The synthesis of this unique carbohydrate polymer depends on the polysialyltransferases ST8SiaII and ST8SiaIV. Aiming to understand in more detail the contributions of ST8SiaII and ST8SiaIV to polySia biosynthesis in vivo, we used mutant mouse lines that differ in the number of functional polysialyltransferase alleles. The 1,2-diamino-4,5-methylenedioxybenzene method was used to qualitatively and quantitatively assess the polySia patterns. Similar to the wild-type genotype, long polySia chains (>50 residues) were detected in all genotypes expressing at least one functional polysialyltransferase allele. However, variant allelic combinations resulted in distinct alterations in the total amount of poly-Sia; the relative abundance of long, medium, and short polymers; and the ratio of polysialylated to non-polysialylated NCAM. In ST8SiaII-null mice, 45% of the brain NCAM was non-polysialylated, whereas a single functional allele of ST8SiaII was sufficient to polysialylate approximately 90% of the NCAM pool. Our data reveal a complex polysialylation pattern and show that, under in vivo conditions, the coordinated action of ST8SiaII and ST8SiaIV is crucial to fine-tune the amount and structure of polySia on NCAM.  相似文献   

6.
Polysialic acid, a homopolymer of alpha2,8-linked sialic acid expressed on the neural cell adhesion molecule (NCAM), is thought to play critical roles in neural development. Two highly homologous polysialyltransferases, ST8Sia II and ST8Sia IV, which belong to the sialyltransferase gene family, synthesize polysialic acid on NCAM. By contrast, ST8Sia III, which is moderately homologous to ST8Sia II and ST8Sia IV, adds oligosialic acid to itself but very inefficiently to NCAM. Here, we report domains of polysialyltransferases required for NCAM recognition and polysialylation by generating chimeric enzymes between ST8Sia IV and ST8Sia III or ST8Sia II. We first determined the catalytic domain of ST8Sia IV by deletion mutants. To identify domains responsible for NCAM polysialylation, different segments of the ST8Sia IV catalytic domain, identified by the deletion experiments, were replaced with corresponding segments of ST8Sia II and ST8Sia III. We found that larger polysialic acid was formed on the enzymes themselves (autopolysialylation) when chimeric enzymes contained the carboxyl-terminal region of ST8Sia IV. However, chimeric enzymes that contain only the carboxyl-terminal segment of ST8Sia IV and the amino-terminal segment of ST8Sia III showed very weak activity toward NCAM, even though they had strong activity in polysialylating themselves. In fact, chimeric enzymes containing the amino-terminal portion of ST8Sia IV fused to downstream sequences of ST8Sia III inhibited NCAM polysialylation in vitro, although they did not polysialylate NCAM. These results suggest that in polysialyltransferases the NCAM recognition domain is distinct from the polysialylation domain and that some chimeric enzymes may act as a dominant negative enzyme for NCAM polysialylation.  相似文献   

7.
Polysialic acid (polySia) is a unique and highly regulated posttranslational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration and plastic processes including learning and memory. Polysialylated NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. However, the impact of each enzyme in NCAM polysialylation is not understood. Here, we describe the selective cell-based in vitro inhibition of ST8SiaII using synthetic sialic acid precursors. We provide evidence for different substrate affinities of ST8SiaII and ST8SiaIV. These data open the possibility to study the individual role of the two enzymes during various aspects of brain development and function and in tumorigenesis.  相似文献   

8.
Polysialylated neural cell adhesion molecule (NCAM) is thought to play a critical role in neural development. Polysialylation of NCAM was shown to be achieved by two alpha2,8-polysialyltransferases, ST8Sia IV (PST) and ST8Sia II (STX), which are moderately related to another alpha2,8-sialyltransferase, ST8Sia III. Here we describe that all three alpha2,8-sialyltransferases can utilize oligosaccharides as acceptors but differ in the efficiency of adding polysialic acid on NCAM. First, we found that ST8Sia III can form polysialic acid on the enzyme itself (autopolysialylation) but not on NCAM. These discoveries prompted us to determine if ST8Sia IV and ST8Sia II share the property of ST8Sia III in utilizing low molecular weight oligosaccharides as acceptors. By using a newly established method, we found that ST8Sia IV, ST8Sia II, and ST8Sia III all add oligosialic and polysialic acid on various sialylated N-acetyllactosaminyl oligosaccharides, including NCAM N-glycans, fetuin N-glycans, synthetic sialylated N-acetyllactosamines, and on alpha(2)-HS-glycoprotein. Our results also showed that monosialyl and disialyl N-acetyllactosamines can serve equally as an acceptor, suggesting that no initial addition of alpha2,8-sialic acid is necessary for the action of polysialyltransferases. Polysialylation of NCAM by ST8Sia IV and ST8Sia II is much more efficient than polysialylation of N-glycans isolated from NCAM. Moreover, ST8Sia IV and ST8Sia II catalyze polysialylation of NCAM much more efficiently than ST8Sia III. These results suggest that no specific acceptor recognition is involved in polysialylation of low molecular weight sialylated oligosaccharides, whereas the enzymes exhibit pronounced acceptor specificities if glycoproteins are used as acceptors.  相似文献   

9.
Sialic acid (Sia) is expressed as terminal sugar in many glycoconjugates and plays an important role during development and regeneration. Addition of homopolymers of Sia (polysialic acid; polySia/PSA) is a unique and highly regulated post-translational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration, and plastic processes including learning and memory. PolySia-NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. This review summarizes recent knowledge on Sia biosynthesis and the correlation between Sia biosynthesis and polysialylation of NCAM and report on approaches to modify the degree of polySia on NCAM in vitro and in vivo. First, we describe the inhibition of polysialylation of NCAM in ST8SiaII-expressing cells using synthetic Sia precursors. Second, we demonstrate that the key enzyme of the Sia biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) regulates and limits the synthesis of polySia by controlling the cellular Sia concentration.  相似文献   

10.
The presence of alpha2,8-linked polysialic acid on the neural cell adhesion molecule (NCAM) is known to modulate cell interactions during development and oncogenesis. Two enzymes, the alpha2,8-polysialyltransferases ST8Sia IV()/PST and ST8Sia II()/STX are responsible for the polysialylation of NCAM. We previously reported that both ST8Sia IV/PST and ST8Sia II/STX enzymes are themselves modified by alpha2,8-linked polysialic acid chains, a process called autopolysialylation. In the case of ST8Sia IV/PST, autopolysialylation is not required for enzymatic activity. However, whether the autopolysialylation of ST8Sia II/STX is required for its ability to polysialylate NCAM is unknown. To understand how autopolysialylation impacts ST8Sia II/STX enzymatic activity, we employed a mutagenesis approach. We found that ST8Sia II/STX is modified by six Asn-linked oligosaccharides and that polysialic acid is distributed among the oligosaccharides modifying Asn 89, 219, and 234. Coexpression of a nonautopolysialylated ST8Sia II/STX mutant with NCAM demonstrated that autopolysialylation is not required for ST8Sia II/STX polysialyltransferase activity. In addition, catalytically active, nonautopolysialylated ST8Sia II/STX does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Furthermore, immunoblot analysis of NCAM polysialylation by autopolysialylated and nonautopolysialylated ST8Sia II/STX suggests that the NCAM is polysialylated to a higher degree by autopolysialylated ST8Sia II/STX. Therefore, we conclude that autopolysialylation of ST8Sia II/STX, like that of ST8Sia IV/PST, is not required for, but does enhance, NCAM polysialylation.  相似文献   

11.
12.
13.
14.
15.
Polysialyltransferase-1 (PST; ST8Sia IV) is one of the alpha2, 8-polysialyltransferases responsible for the polysialylation of the neural cell adhesion molecule (NCAM). The presence of polysialic acid on NCAM has been shown to modulate cell-cell and cell-matrix interactions. We previously reported that the PST enzyme itself is modified by alpha2,8-linked polysialic acid chains in vivo. To understand the role of autopolysialylation in PST enzymatic activity, we employed a mutagenesis approach. We found that PST is modified by five Asn-linked oligosaccharides and that the vast majority of the polysialic acid is found on the oligosaccharide modifying Asn-74. In addition, the presence of the oligosaccharide on Asn-119 appeared to be required for folding of PST into an active enzyme. Co-expression of the PST Asn mutants with NCAM demonstrated that autopolysialylation is not required for PST polysialyltransferase activity. Notably, catalytically active, non-autopolysialylated PST does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Immunoblot analyses of NCAM polysialylation by polysialylated and non-autopolysialylated PST suggests that the NCAM is polysialylated to a higher degree by autopolysialylated PST. We conclude that autopolysialylation of PST is not required for, but does enhance, NCAM polysialylation.  相似文献   

16.
17.
Neuropilin-2 (NRP2) is well known as a co-receptor for class 3 semaphorins and vascular endothelial growth factors, involved in axon guidance and angiogenesis. Moreover, NRP2 was shown to promote chemotactic migration of human monocyte-derived dendritic cells (DCs) toward the chemokine CCL21, a function that relies on the presence of polysialic acid (polySia). In vertebrates, this posttranslational modification is predominantly found on the neural cell adhesion molecule (NCAM), where it is synthesized on N-glycans by either of the two polysialyltransferases, ST8SiaII or ST8SiaIV. In contrast to NCAM, little is known on the biosynthesis of polySia on NRP2. Here we identified the polySia attachment sites and demonstrate that NRP2 is recognized only by ST8SiaIV. Although polySia-NRP2 was found on bone marrow-derived DCs from wild-type and St8sia2−/− mice, polySia was completely lost in DCs from St8sia4−/− mice despite normal NRP2 expression. In COS-7 cells, co-expression of NRP2 with ST8SiaIV but not ST8SiaII resulted in the formation of polySia-NRP2, highlighting distinct acceptor specificities of the two polysialyltransferases. Notably, ST8SiaIV synthesized polySia selectively on a NRP2 glycoform that was characterized by the presence of sialylated core 1 and core 2 O-glycans. Based on a comprehensive site-directed mutagenesis study, we localized the polySia attachment sites to an O-glycan cluster located in the linker region between b2 and c domain. Combined alanine exchange of Thr-607, -613, -614, -615, -619, and -624 efficiently blocked polysialylation. Restoration of single sites only partially rescued polysialylation, suggesting that within this cluster, polySia is attached to more than one site.  相似文献   

18.
Polysialic acid (polySia) attached to the neural cell adhesion molecule (NCAM) regulates inter alia the proliferation and differentiation via the interactions with neurotrophins. Since in postnatal epididymis neurotrophins and their receptors like the Low-Affinity Nerve Growth Factor Receptor p75 and TrK B receptor are expressed, we wanted to analyze if the polysialylation of NCAM is also involved during the development of the epididymis. To this end, we monitored the developmental changes in the expression of the polysialyltransferases and NCAM polysialylation using murine epididymis at different time points during postnatal development. Our results revealed that during postnatal development of the epididymis both polysialyltransferases, ST8SiaII and ST8SiaIV, were expressed and that the expression levels dropped with increasing age. In agreement with the expression levels of the polysialyltransferases the highest content of polysialylated NCAM was present during the first 10 days after birth. Interestingly, proliferating smooth muscle cell populations prevalently expressed polysialylated NCAM. Furthermore, we observed that inverse to the decrease in polysialylation of smooth muscle cells a strong up-regulation of collagen takes place suggesting a functional relationship since collagen was recently described to induce the turnover of polysialylated NCAM via an induction of endocytosis in cellulo. The same time course of polySia and collagen synthesis was also observed in other regions of the male reproductive system e.g. vas deferens and tunica albuginea (testis). Together, we identified a spatio-temporal expression pattern of polySia-NCAM characterized by high proliferation rate of smooth muscle cells and low collagen content.  相似文献   

19.
Polysialylation of the neural cell adhesion molecule (NCAM) is thought to play a critical role in neural development. Two polysialyltransferases, ST8Sia II and ST8Sia IV, play dominant roles in polysialic acid synthesis on NCAM. However, the individual roles and mechanisms by which these two enzymes form large amounts of polysialic acid on NCAM were heretofore unknown. Previous studies indicate that ST8Sia IV forms more highly polysialylated N-glycans on NCAM than ST8Sia II in vitro. In the present study, we first demonstrated that a combination of ST8Sia II and ST8Sia IV cooperatively polysialylated NCAM, resulting in NCAM N-glycans containing more, and thus longer, polysialic acid than when the enzymes were used individually. There was also an increase in polysialylated NCAM when we used ST8Sia II and ST8Sia IV sequentially, whereas there appeared to be a subtle increase when the enzymes were used in the reverse order. Furthermore, ST8Sia IV was able to add polysialic acid to oligosialylated oligosaccharides and unpolysialylated antennas in N-glycans attached to NCAM, even when polysialic acid was attached to at least one of the other antennas. By contrast, ST8Sia II added little polysialic acid to the same acceptors. On the other hand, neither ST8Sia II nor ST8Sia IV could add polysialic acid to a polysialylated antenna of NCAM N-glycans. These combined results indicate that the synergistic effect of ST8Sia II and ST8Sia IV is caused by: 1) the ability of ST8Sia IV to add polysialic acid to oligosialic acid formed by ST8Sia II, 2) the potential of ST8Sia IV to act on more antennas of N-glycans than ST8Sia II, and 3) the ability of ST8Sia II and ST8Sia IV in combination to act on the fifth and sixth N-glycosylation sites of NCAM.  相似文献   

20.
A limited number of mammalian proteins are modified by polysialic acid, with the neural cell adhesion molecule (NCAM) being the most abundant of these. We hypothesize that polysialylation is a protein-specific glycosylation event and that an initial protein-protein interaction between polysialyltransferases and glycoprotein substrates mediates this specificity. To evaluate the regions of NCAM required for recognition and polysialylation by PST/ST8Sia IV and STX/ST8Sia II, a series of domain deletion proteins were generated, co-expressed with each enzyme, and their polysialylation analyzed. A protein consisting of the fifth immunoglobulin-like domain (Ig5), which contains the reported sites of polysialylation, and the first fibronectin type III repeat (FN1) was polysialylated by both enzymes, whereas a protein consisting of Ig5 alone was not polysialylated by either enzyme. This demonstrates that the Ig5 domain of NCAM and FN1 are sufficient for polysialylation, and suggests that the FN1 may constitute an enzyme recognition and docking site. Two other NCAM mutants, NCAM-6 (Ig1-5) and NCAM-7 (FN1-FN2), were weakly polysialylated by PST/ST8Sia IV, suggesting that a weaker enzyme recognition site may exist within the Ig domains, and that glycans in the FN region are polysialylated. Further analysis indicated that O-linked oligosaccharides in NCAM-7, and O-linked and N-linked glycans in full-length NCAM, are polysialylated when these proteins are co-expressed with the polysialyltransferases in COS-1 cells. Our data support a model in which the polysialyltransferases bind to the FN1 of NCAM to polymerize polysialic acid chains on appropriately presented glycans in adjacent regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号