首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two substitution mutants of the human immunodeficiency virus type 1 gag gene product were isolated after nitrous acid mutagenesis of a recombinant baculovirus expressing a non-N-myristylated, p6-deleted Gag precursor (Pr49). Both mutants failed to assemble intracellular Gag virus-like particles, as does the parental recombinant, and therefore expressed a self-assembly defective (Sad) phenotype in insect cells. The mutations consisted of nonconservative changes involving highly conserved hydrophobic residues in the p24 domain, Leu to Pro at position 268 (L268P) and Leu to Ser at amino acid 322 (L322S). Experimental data suggested that the two mutated residues belonged to functionally different regions of the Gag precursor. (i) A partial complementation effect between the two mutants for Gag precursor assembly was observed in coinfection experiments. (ii) The two mutations showed different phenotypes when placed in the N-myristylated context, of which only the L268P mutation abolished extracellular budding and release of Gag particles at the plasma membrane. Both L268P and L322S mutants had a trans-dominant negative effect on the intracellular assembly of a non-N-myristylated, full-length (Pr55) Gag precursor expressed by a coinfecting recombinant. None of the mutants, however, showed any detectable effect in trans on membrane targeting and budding of the coexpressed N-myristylated wild-type Gag precursor.  相似文献   

2.
A panel of 28 insertion mutants of the human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55Gag) was constructed by linker-insertion mutagenesis and expressed in recombinant baculovirus-infected insect cells. One set of 14 mutants carried the normal N-myristylation signal; the other set constituted their non-N-myristylated counterparts. The mutants were characterized with respect to (i) assembly and extracellular release of membrane-enveloped budding Gag particles, (ii) intracellular assembly and nuclear transport of Gag cores, (iii) specific processing of Pr55Gag by HIV-1 protease in vivo, and (iv) binding of Pr55Gag to an HIV-1 genomic RNA probe in Northwestern blotting. Insertions within the region between amino acid residues 209 and 334 in the CA domain appeared to be the most detrimental to Gag particle assembly and release of Gag into the external medium, whereas a narrower window, between residues 209 and 241, was found to be critical for secretion of soluble Pr55Gag. Differences in Pr55Gag processing in vivo and RNA binding in vitro between N-myristylated and non-N-myristylated Gag mutants suggested a major conformational role for the myristylated N terminus of Gag precursor. In coinfection experiments using wild-type Gag- and mutant Gag-expressing recombinants, a transdominant negative effect on Gag particle assembly and release was observed for insertions located in two separate domains, the matrix and nucleocapsid.  相似文献   

3.
The human immunodeficiency virus type 1 (HIV-1) Pr55gag precursors were previously shown to assemble and bud efficiently as noninfectious virus-like particles (VLPs) when expressed in baculovirus-infected insect cells. In this study, we examined the abilities of foreign antigens to be incorporated on the outer surface of HIV-1 Gag particles. We have used a dual recombinant baculovirus, expressing the HIV-1 Gag gene and gD gene under the control of the P10 and polyhedrin promoters, respectively, to obtain hybrid VLPs. Transmission electron microscopy of insect cells infected with the dual recombinant revealed very large aggregates of particles budding from the cell membrane. The release of VLPs into the culture medium was clearly different for a recombinant baculovirus producing solely HIV-1 Gag, for which particles were uniformly distributed all around the cell surface. Biochemical analysis of hybrid particles indicated that glycoprotein gD was packaged into HIV-1 Gag VLPs. Moreover, the carboxy-terminal p6 region of Gag polyprotein and the glycoprotein gD intracytoplasmic domain were not required for gD incorporation. The experiments described here clearly demonstrate that glycoprotein gD can be packaged with HIV-1 Gag particles and released from insect cells.  相似文献   

4.
The structural precursor polyprotein of human immunodeficiency virus type 1, Pr55(gag), contains a proline-rich motif (PTAP) called the "late domain" in its C-terminal p6 region that directs release of mature virus-like particles (VLPs) from the plasma membranes of gag-transfected COS-1 cells. The motif binds Tsg101 (vacuolar protein-sorting protein 23, or Vps23), which functions in endocytic trafficking. Here, we show that accumulation of the wild-type (wt) Gag precursor in a fraction of COS-1 cytoplasm enriched in multivesicular bodies and small particulate components of the plasma membrane (P100) is p6 dependent. Cleavage intermediates and mature CA mainly partitioned with more rapidly sedimenting larger material enriched in components of lysosomes and early endosomes (P27), and this also was p6 dependent. Expression of truncated or full-length Tsg101 proteins interfered with VLP assembly and Gag accumulation in the P100 fraction. This correlated with reduced accumulation of Gag tagged with green fluorescent protein (Gag-GFP) at the plasma membrane and colocalization with the tagged Tsg101 in perinuclear early endosomes, as visualized by confocal microscopy. Fractionation analysis and confocal examination both indicated that the N-terminal region of Tsg101, which contains binding sites for PTAP and ubiquitin (Ub), was required for Gag trafficking to the plasma membrane. Expression of FLAG-tagged Tsg101 with a deletion in the Ub-binding pocket inhibited VLP release almost completely and to a significantly greater extent than expression of the wt tagged Tsg101 protein or Tsg101-FLAG containing a deletion in the PTAP-binding region. The results demonstrate that Gag associates with endosomal trafficking compartments and indicate that efficient release of virus particles from the plasma membrane requires both the PTAP- and Ub-binding functions of Tsg101 to recruit the cellular machinery required for budding.  相似文献   

5.
Ubiquitin is important for the release of human immunodeficiency virus type 1 (HIV-1) and several other retroviruses, but the functional significance of Gag ubiquitination is unknown. To address this problem, we decided to analyze Gag ubiquitination in detail. A low percentage of the HIV-1 p6 protein has previously been shown to be ubiquitinated, and published mutagenesis data suggested that Gag ubiquitination is largely lost upon mutation of the two lysine residues in p6. In this study, we show that Gag proteins lacking the p6 domain or the two lysine residues within p6 are ubiquitinated at levels comparable to those of the wild-type Gag protein. We detected monoubiquitinated forms of the matrix (MA), capsid (CA), and nucleocapsid (NC) proteins in mature virus preparations. Protease digestion of Gag polyproteins extracted from immature virions indicated that ubiquitinated MA, CA, and possibly NC are as abundant as ubiquitinated p6. The HIV-1 late-domain motifs PTAP and LRSLF were not required for Gag ubiquitination, and mutation of the PTAP motif even resulted in an increase in the amount of Gag-Ub conjugates detected. Finally, at steady state, ubiquitinated Gag proteins were not enriched in either membrane-associated or virus-derived Gag fractions. In summary, these results indicate that HIV-1 Gag can be monoubiquitinated in all domains and that ubiquitination of lysine residues outside p6 may thus contribute to viral release and/or infectivity.  相似文献   

6.
Gomez CY  Hope TJ 《Journal of virology》2006,80(17):8796-8806
Human immunodeficiency virus type 1 (HIV-1) assembly requires the converging of thousands of structural proteins on cellular membranes to form a tightly packed immature virion. The Gag polyprotein contains all of the determinants important for viral assembly and must move around in the cell in order to form particles. This work has focused on Gag mobility in order to provide more insights into the dynamics of particle assembly. Key to these studies was the use of several fluorescently labeled Gag derivatives. We used fluorescence recovery after photobleaching as well as photoactivation to determine Gag mobility. Upon expression, Gag can be localized diffusely in the cytoplasm, associated with the plasma membrane, or in virus-like particles (VLPs). Here we show that Gag VLPs are primarily localized in the plasma membrane and do not colocalize with CD63. We have shown using full-length Gag as well as truncation mutants fused to green fluorescent protein that Gag is highly mobile in live cells when it is not assembled into VLPs. Results also showed that this mobility is highly dependent upon cholesterol. When cholesterol is depleted from cells expressing Gag, mobility is significantly decreased. Once cholesterol was replenished, Gag mobility returned to wild-type levels. Taken together, results from these mobility studies suggest that Gag is highly mobile and that as the assembly process proceeds, mobility decreases. These studies also suggest that Gag assembly must occur in cholesterol-rich domains in the plasma membrane.  相似文献   

7.
In vitro assembly of human immunodeficiency virus type 1 Gag protein.   总被引:7,自引:0,他引:7  
Retroviral Gag protein is sufficient to produce Gag virus-like particles when expressed in higher eukaryotic cells. Here we describe the in vitro assembly reaction of human immunodeficiency virus Gag protein, which consists of two sequential steps showing the optimal conditions for each reaction. Following expression and purification, Gag protein lacking only the C-terminal p6 domain was present as a monomer (50 kDa) by velocity sedimentation analysis. Initial assembly of the Gag protein to 60 S intermediates occurred by dialysis at 4 degrees C in low salt at neutral to alkaline pH. However, higher order of assembly required incubation at 37 degrees C and was facilitated by the addition of Mg(2+). Prolonged incubation under these conditions produced complete assembly (600 S), equivalent to Gag virus-like particles obtained from Gag-expressing cells. Neither form disassembled by treatment with nonionic detergent, suggesting that correct assembly might occur in vitro. Electron microscopic observation confirmed that the 600 S assembly products were spherical particles similar to authentic immature human immunodeficiency virus particles. The latter assembly stage but not the former was accelerated by the addition of RNA although not inhibited by RNaseA treatment. These results suggest that Gag protein alone assembles in vitro, but that additional RNA facilitates the assembly reaction.  相似文献   

8.
The nucleocapsid (NC) domains of retrovirus precursor Gag (PrGag) proteins play an essential role in virus assembly. Evidence suggests that NC binding to viral RNA promotes dimerization of PrGag capsid (CA) domains, which triggers assembly of CA N-terminal domains (NTDs) into hexamer rings that are interconnected by CA C-terminal domains. To examine the influence of dimerization on human immunodeficiency virus type 1 (HIV-1) Gag protein assembly in vitro, we analyzed the assembly properties of Gag proteins in which NC domains were replaced with cysteine residues that could be linked via chemical treatment. In accordance with the model that Gag protein pairing triggers assembly, we found that cysteine cross-linking or oxidation reagents induced the assembly of virus-like particles. However, efficient assembly also was observed to be temperature dependent or required the tethering of NTDs. Our results suggest a multistep pathway for HIV-1 Gag protein assembly. In the first step, Gag protein pairing through NC-RNA interactions or C-terminal cysteine linkage fosters dimerization. Next, a conformational change converts assembly-restricted dimers or small oligomers into assembly-competent ones. At the final stage, final particle assembly occurs, possibly through a set of larger intermediates.  相似文献   

9.
A replication-competent rhabdovirus-based vector expressing human immunodeficiency virus type 1 (HIV-1) Gag protein was characterized on human cell lines and analyzed for the induction of a cellular immune response in mice. We previously described a rabies virus (RV) vaccine strain-based vector expressing HIV-1 gp160. The recombinant RV was able to induce strong humoral and cellular immune responses against the HIV-1 envelope protein in mice (M. J. Schnell et al., Proc. Natl. Acad. Sci. USA 97:3544-3549, 2000; J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001). Recent research suggests that the HIV-1 Gag protein is another important target for cell-mediated host immune defense. Here we show that HIV-1 Gag can efficiently be expressed by RV on both human and nonhuman cell lines. Infection of HeLa cells with recombinant RV expressing HIV-1 Gag resulted in efficient expression of HIV-1 precursor protein p55 as indicated by both immunostaining and Western blotting. Moreover, HIV-1 p24 antigen capture enzyme-linked immunosorbent assay and electron microscopy showed efficient release of HIV-1 virus-like particles in addition to bullet-shaped RV particles in the supernatants of the infected cells. To initially screen the immunogenicity of this new vaccine vector, BALB/c mice received a single vaccination with the recombinant RV expressing HIV-1 Gag. Immunized mice developed a vigorous CD8(+) cytotoxic T-lymphocyte response against HIV-1 Gag. In addition, 26.8% of CD8(+) T cells from mice immunized with RV expressing HIV-1 Gag produced gamma interferon after challenge with a recombinant vaccinia virus expressing HIV-1 Gag. These results further confirm and extend the potency of RV-based vectors as a potential HIV-1 vaccine.  相似文献   

10.
Human cells infected with a recombinant vaccinia virus containing human immunodeficiency virus type 1 gag-pol genes produced large amounts of human immunodeficiency virus gag proteins beginning at 1 h and peaking at 48 h postinfection. We show that these polyproteins are processed accurately into mature forms and that the viral polymerase gene is encoded as a 160-kilodalton gag-pol fusion protein, most likely by translational frameshifting from the gag into the pol reading frame.  相似文献   

11.
The Vif protein of human immunodeficiency virus type 1 (HIV-1) and other lentiviruses is required for efficient replication in primary cells and certain immortalized cell lines in vitro and, in all likelihood, for the establishment of pathogenic infections in vivo. Current hypotheses concerning Vif's mechanism of action posit that it operates in virus-expressing cells during virion assembly, budding, or maturation such that released virions are modified in a manner that enables them to undergo productive infection in subsequent viral challenges. To gain further insight into the mechanism of action of lentivirus Vif proteins, we have performed a variety of in situ localization and biochemical fractionation studies using cells in which Vif is essential for efficient replication. Double-label immunofluorescence analyses of cells productively infected with HIV-1 or feline immunodeficiency virus revealed dramatic patterns of colocalization between Vif and the virally encoded Gag proteins. Subcellular fractionations of human T cells expressing HIV-1 Vif performed in the absence of any detergent demonstrated that greater than 90% of Vif is associated with cellular membranes. Additional purification using a continuous density gradient indicated that the majority of the membrane-bound Vif copurifies with the plasma membrane. Taken together, these observations suggest that lentivirus Vif and Gag proteins colocalize at the plasma membrane as virion assembly and budding take place. As a result, Vif is able to exert its modulatory effect(s) on these late steps of the virus life cycle.  相似文献   

12.
The retroviral Gag polyprotein is necessary and sufficient for assembly and budding of viral particles. However, the exact inter- and intramolecular interactions of the Gag polyproteins during this process are not known. To locate functional domains within Gag, we generated chimeric proviruses between human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MuLV). In these chimeric proviruses, the matrix or capsid proteins of MuLV were precisely replaced with the matrix or capsid proteins of HIV-1. Although the chimeric proviruses were unable to efficiently assemble into mature viral particles by themselves, coexpression of wild-type MuLV Gag rescued the HIV proteins into virions. The specificity of the rescue of HIV proteins into MuLV virions shows that specific interactions involving homologous matrix or capsid regions of Gag are necessary for retroviral particle formation.  相似文献   

13.
The role of the matrix protein (MA) of human immunodeficiency virus type 1 in intracellular transport, assembly, and extracellular release of Gag polyprotein precursor (Pr55gag) was investigated by deletion mutagenesis of the MA domain of recombinant Gag precursor expressed in baculovirus-infected cells. In addition, three carboxy-terminally truncated forms of the Gag precursor, representing mainly the MA, were constructed. One corresponded to an MA with a deletion of its last 12 residues (amb120), while the others corresponded to the entire MA with an additional sequence from the N-terminal portion of the CA (amb143 and och180). Deletions within the MA central region (residues 41 to 78) appeared to be detrimental to Gag particle assembly and budding from the plasma membrane. A slightly narrower domain, between amino acids 41 and 68, was found to be critical for soluble Gag secretion. Mutations which totally or partially deleted one or the other of the two polybasic signals altered the transport of N-myristylated Gag precursor to the plasma membrane. In coexpression with wild-type Gag precursor, a discrete trans-dominant negative effect on wild-type Gag particle assembly and release was observed with deletion mutants located in the central MA region (residues 41 to 78). A more significant negative effect was obtained with the two recombinant proteins of amb120 and och180, which redirected the Gag particle assembly pathway from the plasma membrane compartment to intracellular vesicles (amb120) and to the nuclear compartment (och180).  相似文献   

14.
Ubiquitin is important for the release of human immunodeficiency virus 1 (HIV-1) and several other retroviruses. All major domains of the HIV-1 Gag protein are monoubiquitinated, but the modifying machinery and the function of HIV-1 Gag ubiquitination remain unclear. Here, we show that the induction of a late budding arrest by mutation of the HIV-1 PTAP motif or by specific inhibition of selected ESCRT components leads to an increase of Gag-ubiquitin conjugates in cells, which coincides with an accumulation of detergent-insoluble, multimerized Gag at the plasma membrane. Membrane flotation experiments revealed that ubiquitinated Gag is highly enriched in membrane-bound fractions. Based on these findings, we propose that a blocking of virus release results in increased Gag ubiquitination as a consequence of its prolonged membrane association. Consistent with this, ubiquitination of a membrane-binding-defective (G2A)Gag mutant was dramatically reduced and the ubiquitination levels of truncated Gag proteins correlated with their abilities to bind to membranes. We therefore propose that membrane association and multimerization of HIV-1 Gag proteins, rather than a specific motif within Gag, trigger recognition by the cellular ubiquitination machinery.  相似文献   

15.
Ono A  Demirov D  Freed EO 《Journal of virology》2000,74(11):5142-5150
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.  相似文献   

16.
Pretreatment of HeLa T4 cells with recombinant alpha, beta, or gamma interferon (IFN) was found to significantly inhibit syncytium formation induced by the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. All three IFNs were found to be potent inhibitors of fusion in a system in which Spodoptera frugiperda cells, infected with a baculovirus recombinant expressing the HIV-1 envelope protein, were cocultivated with HeLa T4 cells. In addition, these IFNs were also found to block HeLa T4 cell fusion induced by the HIV-1 envelope proteins expressed from a vaccinia virus recombinant. Furthermore, the IFNs inhibited cell fusion between HIV-1 envelope glycoprotein-expressing cells and either immortalized or fresh CD4+ lymphocytes pretreated with the IFNs. These results suggest that further testing of human IFNs for therapy of HIV-1 infection will be of interest.  相似文献   

17.
18.
19.
Assembly of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein on budding virus particles is important for efficient infection of target cells. In infected cells, lipid rafts have been proposed to form platforms for virus assembly and budding. Gag precursors partly associate with detergent-resistant membranes (DRMs) that are believed to represent lipid rafts. The cytoplasmic domain of the envelope gp41 usually carries palmitate groups that were also reported to confer DRM association. Gag precursors confer budding and carry envelope glycoproteins onto virions via specific Gag-envelope interactions. Thus, specific mutations in both the matrix domain of the Gag precursor and gp41 cytoplasmic domain abrogate envelope incorporation onto virions. Here, we show that HIV-1 envelope association with DRMs is directly influenced by its interaction with Gag. Thus, in the absence of Gag, envelope fails to associate with DRMs. A mutation in the p17 matrix (L30E) domain in Gag (Gag L30E) that abrogates envelope incorporation onto virions also eliminated envelope association with DRMs in 293T cells and in the T-cell line, MOLT 4. These observations are consistent with a requirement for an Env-Gag interaction for raft association and subsequent assembly onto virions. In addition to this observation, we found that mutations in the gp41 cytoplasmic domain that abrogated envelope incorporation onto virions and impaired infectivity of cell-free virus also eliminated envelope association with DRMs. On the basis of these observations, we propose that Gag-envelope interaction is essential for efficient envelope association with DRMs, which in turn is essential for envelope budding and assembly onto virus particles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号