首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We obtained a series of Escherichia coli strains in which gapA, gapB, or both had been deleted. Delta gapA strains do not revert on glucose, while delta gapB strains grow on glycerol or glucose. We showed that gapB-encoded protein is expressed but at a very low level. Together, these results confirm the essential role for gapA in glycolysis and show that gapB is dispensable for both glycolysis and the pyridoxal biosynthesis pathway.  相似文献   

4.
The sequence of the genome from the Lactococcus lactis subspecies lactis strain IL1403 shows the presence of two reading frames, gapA and gapB, putatively encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Previous proteomic analysis of the L. lactis subspecies cremoris strain MG1363 has revealed two neighbouring protein spots, GapBI and GapBII, with amino terminal sequences identical to the product of gapA from the L. lactis subspecies cremoris strain LM0230 and that of the two IL1403 sequences. In order to assign the two protein spots to their respective genes we constructed an L. lactis strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild-type, the overexpressing strain had a 3.4-fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG1363 and the gapA overexpressing strain the GAPDH activity was specific for NAD. No NADP dependent activity was detected. Proteome analysis of the gapA overexpressing strain revealed two new protein spots, GapAI and GapAII, not previously detected in proteome analysis of MG1363. Results from mass spectrometry analysis of GapA and GapB and comparison with the deduced protein sequences for the GAPDH isozymes from the genome sequence of strain IL1403 allowed us to assign GapA and GapB to their apparent IL1403 homologues encoded by gapA and gapB, respectively. Furthermore, we suggest that a homologue of a gapB product, represented by GapB, is the main source of GAPDH activity in L. lactis during normal growth.  相似文献   

5.
M C Shih  G Lazar  H M Goodman 《Cell》1986,47(1):73-80
We report nucleotide sequences of cDNAs for the nuclear genes encoding chloroplast (GapA and GapB) and cytosolic (GapC) glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from N. tabacum. Comparison of nucleotide sequences indicates that the GapA and GapB genes evolved following duplication of an ancestral gene about 450 million years ago. However, the divergence of GapA/B and GapC occurred much earlier in evolution than the divergence of GapC and GAPDH genes of animals and fungi, suggesting that chloroplast and cytosolic GAPDHs evolved from different lineages. Comparison of amino acid sequences shows that the chloroplast GAPDHs are related to GAPDHs found in thermophilic bacteria, while the cytosolic GAPDH is related to the GAPDH found in mesophilic prokaryotes. These results strongly support the symbiotic origin of chloroplasts.  相似文献   

6.
The phosphofructokinase genes of yeast evolved from two duplication events   总被引:7,自引:0,他引:7  
Yeast phosphofructokinase (PFK) is an octameric enzyme composed of four alpha-subunits and four beta-subunits, encoded by the genes PFK1 and PFK2, respectively. PFK1 was mapped 23 cM distal to ADE3 on chromosome VII, and PFK2 30 cM proximal to RNA1 on chromosome XIII. The entire nucleotide sequences for the two genes were obtained by sequencing both DNA strands. Only one major open reading frame was found for each gene. They encode 987 aa for PFK1 (Mr 107,984) and 959 aa for PFK2 (Mr 104,589). Both genes show a biased codon usage. The deduced amino acid sequences showed: (i) 20% homology between the N- and the C-terminal halves of each subunit, (ii) 55% homology between the two subunits, and (iii) significant homologies to the PFK sequences from human and rabbit muscle (42%), Escherichia coli (34%), and Bacillus (36%). These data support the view that two gene duplication events occurred in the evolution of the yeast PFK genes. The first duplication event took place soon after the separation of prokaryotic and eukaryotic lineage and the second in Saccharomyces later in the phylogeny. Functional domains in the yeast subunits were deduced by comparison to the rabbit muscle enzyme.  相似文献   

7.
Y Kim  H Zhang  R L Scholl 《Gene》1990,93(2):177-182
Two clones of Arabidopsis thaliana possessing high sequence identity to the yeast gene encoding ribosomal (r) protein L3 were isolated by heterologous DNA hybridization. The coding regions of these two clones have approx. 63% amino acid (aa) sequence identity to the yeast L3 r-protein and 85% aa sequence identity to each other. Both genes are expressed in shoots. The presence of two divergent genes in A. thaliana raises the possibility that the gene products participate in the formation of functionally distinct ribosomes.  相似文献   

8.
To investigate a possible chromosomal clustering of glycolytic enzyme genes, the complete nucleotide sequence of the 8029 bp insert of Escherichia coli DNA in the ColE1 plasmid pLC33-5 of the Clarke and Carbon collection (Clark and Carbon, 1976) was determined. Genes (pgk, fda) encoding the phosphoglycerate kinase and Class II fructose 1,6-bisphosphate aldolase, respectively, of E. coli were identified. The phosphoglycerate kinase was found to be highly homologous in primary structure to the same enzyme from eukaryotic organisms. A further large open reading frame, designated gapB, was also identified, which on the basis of sequence homology, appears to encode another glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase. This putative gene differs significantly from that (designated gapA) already identified as coding for this enzyme in E. coli and which maps elsewhere on the chromosome. The products, if any, of several other open reading frames remain to be identified.  相似文献   

9.
One step in de novo pyridoxine (vitamin B6) and pyridoxal 5'-phosphate biosynthesis was predicted to be an oxidation catalyzed by an unidentified D-erythrose-4-phosphate dehydrogenase (E4PDH). To help identify this E4PDH, we purified the Escherichia coli K-12 gapA- and gapB-encoded dehydrogenases to homogeneity and tested whether either uses D-erythrose-4-phosphate (E4P) as a substrate. gapA (gap1) encodes the major D-glyceraldehyde-3-phosphate dehydrogenase (GA3PDH). The function of gapB (gap2) is unknown, although it was suggested that gapB encodes a second form of GA3PDH or is a cryptic gene. We found that the gapB-encoded enzyme is indeed an E4PDH and not a second GA3PDH, whereas gapA-encoded GA3PDH used E4P poorly, if at all, as a substrate under the in vitro reaction conditions used in this study. The amino terminus of purified E4PDH matched the sequence predicted from the gapB DNA sequence. Purified E4PDH was a heat-stable tetramer with a native molecular mass of 132 kDa. E4PDH had an apparent Km value for E4P [Kmapp(E4P)] of 0.96 mM, an apparent kcat catalytic constant for E4P [kcatapp(E4P)] of 200 s-1, Kmapp(NAD+) of 0.074 mM, and kcatapp(NAD+) of 169 s-1 in steady-state reactions in which NADH formation was determined. From specific activities in crude extracts, we estimated that there are at least 940 E4PDH tetramer molecules per bacterium growing in minimal salts medium plus glucose at 37 degrees C. Thin-layer chromatography confirmed that the product of the E4PDH reaction was likely the aldonic acid 4-phosphoerythronate. To establish a possible role of E4PDH in pyridoxal 5'-phosphate biosynthesis, we showed that 4-phosphoerythronate is a likely substrate for the 2-hydroxy-acid dehydrogenase encoded by the pdxB gene. Implications of these findings in the evolution of GA3PDHs are also discussed. On the basis of these results, we propose renaming gapB as epd (for D-erythrose-4-phosphate dehydrogenase).  相似文献   

10.
11.
The nucleotide sequence of PgiC1-a which encodes a cytosolic isozyme of phosphoglucose isomerase (PGIC; EC 5.3.1.9) in Clarkia lewisii, a wildflower native to California, is described and compared to the previously published sequence of the duplicate PgiC2-a from the same genome. Both genes have the same structure of 23 exons and 22 introns located in identical positions, and they encode proteins of 569 amino acids. Exon and inferred protein sequences of the two genes are 96.4% and 97.2% identical, respectively. Intron sequences are 88.2% identical. The high nucleotide similarity of the two genes is consistent with previous genetic and biosystematic findings that suggest the duplication arose within Clarkia. A partial sequence of PgiC2-b was also obtained. It is 99.5% identical to PgiC2-a in exons and 99.7% in introns. The nucleotide sequence of the single PgiC from Arabidopsis thaliana was also determined for comparison to the Clarkia genes. The A. thaliana PgiC has 21 introns located at positions identical to those in Clarkia PgiC1 and PgiC2, but lacks the intron that divides Clarkia exons 21 and 22. The A. thaliana PGIC protein is shorter, with 560 amino acids, and differs by about 17% from the Clarkia PGICs. The PgiC in A. thaliana was mapped to a site 20 cM from restriction fragment length polymorphism marker 331 on chromosome 5.  相似文献   

12.
Wu Y  Wu M  He G  Zhang X  Li W  Gao Y  Li Z  Wang Z  Zhang C 《Analytical biochemistry》2012,423(1):15-22
In the current study, we examined the expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein in a number of organisms and the stability of GAPDH under various conditions. Our results revealed that GAPDH is present in multiple Escherichia coli strains, the yeast strain GS115, Caenorhabditis elegans, rat PC12 cells, and both mouse and rat brain. Furthermore, GAPDH was stably expressed under different concentrations of inducer and at different times of induction in E. coli (BL21) cells and yeast GS115 cells. Stable expression of GAPDH protein was also observed in C.elegans and PC12 cells that were treated with different concentrations of paraquat or sodium sulfite, respectively. In addition, we were able to detect and identify the endogenous gapA protein in E.coli via immunoprecipitation and MALDI-TOF-MS analysis. Endogenous gapA protein and exogenously expressed (subcloned) GAPDH proteins were detected in E. coli BL21 but not for gapC. With the exception of gapC in E. coli, the various isoforms of GAPDH possessed enzymatic activity. Finally, sequence analysis revealed that the GAPDH proteins were 76% identical, with the exception of E. coli gapC. Taken together, our results indicate that GAPDH could be universally used as an internal control for the Western blot analysis of prokaryotic and eukaryotic samples.  相似文献   

13.
Depending on their genetic origin, plant mitochondrial tRNAs are classified into three categories: the "native" and "chloroplast-like" mitochondrial-encoded tRNAs and the imported nuclear-encoded tRNAs. The number and identity of tRNAs in each category change from one plant specie to another. As some plant mitochondrial trn genes were found to be not expressed, and as all Arabidopsis thaliana mitochondrial trn genes are known, we systematically tested the expression of A. thaliana mitochondrial trn genes. Both the "chloroplast-like" trnW and trnM-e genes were found to be not expressed. These exceptions are remarkable since trnW and trnM-e are expressed in the mitochondria of other land plants. Whereas we could not conclude which tRNA(Met) compensates the lack of expression of trnM-e, we showed that the cytosolic tRNA(Trp) is present in A. thaliana mitochondria, thus compensating the absence of expression of the mitochondrial-encoded trnW.  相似文献   

14.
The evolutionary history of the common chloroplast (cp) genome of the allotetraploid Arabidopsis suecica and its maternal parent A. thaliana was investigated by sequencing 50 fragments of cpDNA, resulting in 98 polymorphic sites. The variation in the A. suecica sample was small, in contrast to that of the A. thaliana sample. The time to the most recent common ancestor (T(MRCA)) of the A. suecica cp genome alone was estimated to be about one 37th of the T(MRCA) of both the A. thaliana and A. suecica cp genomes. This corresponds to A. suecica having a MRCA between 10 000 and 50 000 years ago, suggesting that the entire species originated during, or before, this period of time, although the estimates are sensitive to assumptions made about population size and mutation rate. The data was also consistent with the hypothesis of A. suecica being of single origin. Isolation-by-distance and population structure in A. thaliana depended upon the geographical scale analysed; isolation-by-distance was found to be weak on the global scale but locally pronounced. Within the genealogical cp tree of A. thaliana, there were indications that the root of the A. suecica species is located among accessions of A. thaliana that come primarily from central Europe. Selective neutrality of the cp genome could not be rejected, despite the fact that it contains several completely linked protein-coding genes.  相似文献   

15.
An SSR-based linkage map was constructed in Brassica rapa. It includes 113 SSR, 87 RFLP, and 62 RAPD markers. It consists of 10 linkage groups with a total distance of 1005.5 cM and an average distance of 3.7 cM. SSRs are distributed throughout the linkage groups at an average of 8.7 cM. Synteny between B. rapa and a model plant, Arabidopsis thaliana, was analyzed. A number of small genomic segments of A. thaliana were scattered throughout an entire B. rapa linkage map. This points out the complex genomic rearrangements during the course of evolution in Cruciferae. A 282.5-cM region in the B. rapa map was in synteny with A. thaliana. Of the three QTL (Crr1, Crr2, and Crr4) for clubroot resistance identified, synteny analysis revealed that two major QTL regions, Crr1 and Crr2, overlapped in a small region of Arabidopsis chromosome 4. This region belongs to one of the disease-resistance gene clusters (MRCs) in the A. thaliana genome. These results suggest that the resistance genes for clubroot originated from a member of the MRCs in a common ancestral genome and subsequently were distributed to the different regions they now inhabit in the process of evolution.  相似文献   

16.
We studied electrophoretic variation and inheritance of triosephosphate isomerase (TPI) isozymes in maize (Zea mays L.). In contrast to most diploid plants, in maize, TPI exists as multiple isozymes in both the plastid and cytosolic subcellular compartments. Phenotypes result from the overlay of two independent sets of isozymes and allozymes, representing the plastid (encoded by the nuclear genes Tpi1 and Tpi2) and cytosolic (encoded by Tpi3, Tpi4, and Tpi5) systems. All possible intragenic and intergenic dimeric enzymes are formed between polypeptides within each subcellular compartment. No heterodimers are formed between plastid and cytosolic polypeptides. Extensive surveys of accessions of land races and inbred lines revealed 22 allelic variants for the five loci. Most alleles have been formally validated by segregation analysis. We describe two null alleles at Tpi4, distinguished by their relative abilities to form intergenic heterodimers with polypeptides specified by Tpi3 and Tpi5. Linkage analyses and crosses with B-A translocation stocks were effective in determining the chromosome locations of all five loci. Duplicated genes for both the plastid and cytosolic isozymes were localized to genomic regions that possess numerous other redundant sequences. We placed Tpi1 on the long arm of chromosome 7, approximately 23 centimorgans (cM) distal to g11; we localized its duplicate--Tpi2--17 cM distal to v4 on the long arm of chromosome 2. The triplicate loci encoding cytosolic TPIs reside on chromosomes 3 and 8. Tpi4 is approximately equidistant (11 cM) from d1 and Lg3, near the centromere of chromosome 3. Tpi3 and Tpi5 are located on distal ends of the most poorly marked maize chromosome; Tpi3 is 29 cM distal to Idh 1 on 8L, and Tpi5 is on 8S or near the centromere on 8L. In contrast to most duplicated maize sequences, which often occur in parallel linkages on different chromosomes, Tpi3 and Tpi5 provide an example of intrachromosomal gene duplication. Several of the Tpi loci are located in sparsely mapped regions of the genome, and Tpi1 is the first isozyme marker for chromosome 7.  相似文献   

17.
18.
C D Ryder  L B Smith  G R Teakle  G J King 《Génome》2001,44(5):808-817
Brassica crop species are of worldwide importance and are closely related to the model plant Arabidopsis thaliana for which the complete genome sequence has recently been established. We investigated collinearity of marker order by comparing two contrasting regions of the Brassica oleracea genome with homologous regions of A. thaliana. Although there is widespread replication of marker loci in both A. thaliana and B. oleracea, we found that a combination of genetic markers mapped in B. oleracea, including RFLPs, CAPS, and SSRs allowed comparison and interpretation of medium-scale chromosomal organisation and rearrangements. The interpretation of data was facilitated by hybridising probes onto the whole A. thaliana genome, as represented by BAC contigs. Twenty marker loci were sampled from the whole length of the shortest B. oleracea linkage group, 06, and 21 from a 30.4-cM section of the longest linkage group, 03. There is evidence of locus duplication on linkage group 06. Locus order is well conserved between a putative duplicated region of 10.5 cM and a discrete region comprising 25 cM of A. thaliana chromosome I. This was supported by evidence from seven paralogous loci, three of which were duplicated in a 30.6-cM region of linkage group 06. The pattern of locus order for the remainder of linkage group 06 and the sampled section of linkage group 03 was more complex when compared with the A. thaliana genome. Although there was some conservation of locus order between markers on linkage group 03 and approximately 9 cM of A. thaliana chromosome I, this was superimposed upon a complex pattern of additional loci that were replicated in both A. thaliana and B. oleracea. The results are discussed in the context of the ability to use collinear information to assist map-based cloning.  相似文献   

19.
The heterotrimeric protein phosphatase 2A (PP2A) complex comprises a catalytic subunit and regulatory A and B subunits that modulate enzyme activity and mediate interactions with other proteins. We report here the results of a systematic analysis of the Arabidopsis (Arabidopsis thaliana) regulatory A subunit gene family, which includes the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1), PP2AA2, and PP2AA3 genes. All three A subunit isoforms accumulate in the organs of seedlings and adult plants, suggesting extensive overlap in expression domains. We have isolated pp2aa2 and pp2aa3 mutants and found that their phenotypes are largely normal and do not resemble that of rcn1. Whereas rcn1 pp2aa2 and rcn1 pp2aa3 double mutants exhibit striking abnormalities in all stages of development, the pp2aa2 pp2aa3 double mutant shows only modest defects. Together, these data suggest that RCN1 performs a cardinal role in regulation of phosphatase activity and that PP2AA2 and PP2AA3 functions are unmasked only when RCN1 is absent.  相似文献   

20.
Glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) is an important enzyme that functions in producing energy and supplying intermediates for cellular metabolism. Recent researches indicate that GAPDHs have multiple functions beside glycolysis. However, little information is available for functions of GAPDHs in potato. Here, we identified 4 putative cytosolic GAPDH genes in potato genome and demonstrated that the StGAPC1, StGAPC2, and StGAPC3, which are constitutively expressed in potato tissues and cold inducible in tubers, encode active cytosolic GAPDHs. Cosuppression of these 3 GAPC genes resulted in low tuber GAPDH activity, consequently the accumulation of reducing sugars in cold stored tubers by altering the tuber metabolite pool sizes favoring the sucrose pathway. Furthermore, GAPCs‐silenced tubers exhibited a loss of apical dominance dependent on cell death of tuber apical bud meristem (TAB‐meristem). It was also confirmed that StGAPC1, StGAPC2, and StGAPC3 interacted with the autophagy‐related protein 3 (ATG3), implying that the occurrence of cell death in TAB‐meristem could be induced by ATG3 associated events. Collectively, the present research evidences first that the GAPC genes play crucial roles in diverse physiological and developmental processes in potato tubers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号