首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of the retrograde axonal transport of horseradish peroxidase in the cat, direct projections of neurons in the magno- and mediocellular parts of the basal nucleus of the amygdalar complex have been stated nearly to all parts of the caudate nucleus and projections of a small amount of neurons in the nucleus of the Brocka diagonal ligament--only to the medial edge of the caudate nucleus. The possibility to divide the caudate nucleus into limbic and non-limbic parts is discussed.  相似文献   

2.
Various putative striatal transmitters and related compounds were studied for their effects on the release of gamma-aminobutyric acid (GABA) from slices of the head of the rabbit caudate nucleus. The slices were preincubated with [3H]GABA and then superfused and stimulated electrically at 5 or 20 Hz. Aminooxyacetic acid was present throughout. The main changes observed were the following. The basal and, less consistently, the electrically evoked overflow of [3H]GABA were enhanced by 3,4-dihydroxyphenylethylamine (dopamine), an effect not blocked by cis-flupentixol or domperidone and not mimicked by apomorphine and D1-selective agonists. The electrically evoked overflow was diminished by 5-hydroxytryptamine (serotonin); the inhibition was prevented by methiothepin. The basal but not the electrically evoked overflow was enhanced by carbachol; acetylcholine and nicotine also accelerated the basal outflow whereas oxotremorine caused no consistent change; the effect of carbachol and acetylcholine were blocked by hexamethonium but not by atropine or by tetrodotoxin. These findings indicate that the GABA neurons in the caudate nucleus may be stimulated by dopamine, although the receptor type involved remains unclear; inhibited by serotonin; and stimulated by acetylcholine acting via a nicotine receptor. However, all drug effects observed were relatively small. No evidence was obtained for autoreceptors, alpha 2-adrenoceptors or receptors for opioids, adenosine or substance P at the GABA neurons.  相似文献   

3.
The investigation performed on cats by means of retrograde axonal transport of horseradish peroxidase and luminophores has presented the data demonstrating spatial organization of separate part projections of the nigral complex and the tegmental ventral field to various segments of the caudate nucleus head. Terminal fields from neurons of various parts of the substantia nigra and the tegmental ventral field are demonstrated to overlap in segments of the caudate nucleus. Experiments with double fluorescent labelling demonstrate divergence of axons of the nigral neurons.  相似文献   

4.
Abstract: This study compared the turnover of GABA neurons in different brain areas of the male rat and examined the effect of castration on GABA turnover in regions of the brain associated with the control of gonadotropin secretion. To estimate GABA turnover, GABA was quantified by HPLC in microdissected brain regions 0,30,60,90, and 120 min after inhibition of GABA degradation by aminooxyacetic acid (100 mg/kg, i.p.). GABA accumulation was linear in all areas for 90 min ( p < 0.01), and GABA turnover was estimated as the slope of the line formed by increased GABA concentration versus time, determined by linear regression. There was considerable regional variation both in the initial steady-state concentrations of GABA and in the rates of GABA turnover. Of 10 discrete brain structures, GABA turnover was highest in the medial preoptic nucleus and lowest in the caudate nucleus. Turnover times in the terminal fields of known GABAergic projection neurons ranged sevenfold, from 2.6 h in the substantia nigra to 0.4 h in the lateral vestibular nucleus. The effect of castration on GABA turnover in 13 microdissected brain regions was investigated by measuring regional GABA concentrations before and 30 min after injection of aminooxyacetic acid in intact rats or 2 or 6 days postcastration. Following castration, steady-state GABA concentrations were increased, and GABA turnover decreased in the diagonal band of Broca, the medial preoptic area, and the median eminence. GABA turnover increased in the medial septal nucleus and was unaffected in the cortex, striatum, and hindbrain. These results are consistent with the hypothesis that testosterone negative-feedback control of luteinizing hormone-releasing hormone involves steroid-sensitive GABAergic neurons in the rostral and medial basal hypothalamus.  相似文献   

5.
Wang  X.S.  Ong  W.Y. 《Brain Cell Biology》1999,28(12):1053-1061
The distribution of the GABA transporter GAT-1 was studied by immunocytochemistry and electron microscopy in the monkey basal ganglia. Dense staining was observed in the globus pallidus externa and interna, intermediate in the subthalamic nucleus, and substantia nigra, and light staining in the caudate nucleus and putamen. Staining was observed in axon terminals, but not cell bodies. Electron microscopy showed that the GAT-1 positive axon terminals formed symmetrical synapses, suggesting that they were the terminals of GABAergic neurons. Comparison of areas high in GAT-1 protein with that of GABA showed a good correlation between the density in neuropil staining for GAT-1, and that of GABA.  相似文献   

6.
In vivo release of transmitters in the cat basal ganglia   总被引:3,自引:0,他引:3  
The release of transmitters was studied in various structures of the basal ganglia in cats implanted with several push-pull cannulas. Local depolarization enhanced Met-enkephalin release in the globus pallidus. Activation of striatonigral substance P(SP) neutrons stimulated the transmitter release from terminals. Unilateral electrical stimulation of the caudate nucleus evoked GABA release in both substantia nigrae and pallidoentopeduncular nuclei. The unilateral facilitation or interruption of nigral SP transmission modified dopamine (DA) release in the ipsilateral caudate nucleus in contrast, modifications of GABAergic or glycinergic nigral transmissions induced bilateral symmetrical effects, whereas bilateral asymmetrical changes in DA release in the two caudate nuclei were seen during the unilateral modification of nigral DA transmission. Changes in the dendritic release of DA induced changes in serotonin release both in the substantia nigra and in the ipsilateral caudate nucleus. Finally, it will be shown that acetylcholinesterase can be released from the substantia nigra and the caudate nucleus through processes dependent on nerve activity.  相似文献   

7.
Responses of caudate neurons to stimulation of the anterior sigmoid and various parts of the suprasylvian gyrus were studied in acute experiments on cats. The experiments consisted of two series: on animals with an intact thalamus and on animals after preliminary destruction of the nonspecific thalamic nuclei. Stimulation of all cortical areas tested in intact animals evoked complex multicomponent responses in caudate neurons with (or without) initial excitation, followed by a phase of inhibition and late activation. The latent periods of the initial responses to stimulation of all parts of the cortex were long and averaged 14.5–25.5 msec. Quantitative and qualitative differences were established in responses of the caudate neurons to stimulation of different parts of the cortex. Considerable convergence of cortical influences on neurons of the caudate nucleus was found. After destruction of the nonspecific thalamic nuclei all components of the complex response of the caudate neurons to cortical stimulation were preserved, and only the time course of late activation was modified.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 464–471, September–October, 1980.  相似文献   

8.
Vitamin B6 injected intraperitoneally into rats 400 mg/kg body weight, has produced a statistically significant decrease in GABA level concentrations in hippocampus and cerebellum. Cerebral cortex, caudate nucleus and thalamus have shown the decrease in GABA concentrations, but these changes were not statistically significant. No remarkable behavioural changes were noted under such circumstances. The possible functional meaning of these results is discussed in relation to the role of GABA distribution in different brain regions and development of convulsions.  相似文献   

9.
Functional significance of GABA-structures of the caudate nucleus was studied by EEG analysis of the influence of stimulation of these structures on the development of the effect of systemic introduction of the blockader of dopaminergic receptors haloperidol. Microinjections of GABA to the caudate nucleus prevented the suppressing action of haloperidol on food-procuring cats behaviour and led to restoration of the EEG-reaction to conditioned sound stimuli. A conclusion is made about an important role of GABA-ergic structures in the mechanisms of dopaminergic control of the inhibitory function of the caudate nucleus.  相似文献   

10.
Efferent connections of the caudate nucleus were studied experimentally in 13 cats after electrolytic destruction of various parts of it. Preparations were stained by the methods of Nauta, Knook, and Fink-Heimer. Direct caudatocortical connections with a definite topical organization were discovered: a ventrodorsal projection in the cortex corresponds to a rostrocaudal and ventrodorsal distribution of neurons in the caudate nucleus. Striatocortical fibers are few in number and very thin. Their predeterminals were found in both the deep and the superficial layers of the cortex on granule cells and pyramidal cells of different sizes. The results are in agreement with those of most of the recent physiological investigations indicating a close functional connection between the caudate nucleus and the cortex.  相似文献   

11.
Structural and ultrastructural changes in the frontal areas of the cortex and in the region of the globus pallidus were investigated after local and extensive destruction of the caudate nucleus. It was shown by the Fink-Heimer method that after local injury to the caudate nucleus by means of electrodes implanted 2–16 months before electrolytic destruction, only a few degenerating fibers of medium and thin caliber were present. Extensive destruction of the caudate nucleus (without preimplantation of electrodes) was followed by massive degeneration of fibers of different caliber in the frontal area of the cortex. After local injury to the caudate nucleus numerous thin degenerating axons 0.5–0.6 µ in diameter and degenerating terminals were found in the region of the globus pallidus. Degenerative changes in the axo-dendritic and axo-somatic terminals followed the "dark" type of course. It is concluded that no considerable direct projections of neurons of the caudate nucleus are present in the cortex. Degenerating fibers of average caliber in frontal areas of the cortex after destruction of the caudate nucleus are evidently axons of thalamic neurons and not from cells of the damaged nucleus.A. A. Bogomol'ets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 2, pp. 165–171, March–April, 1975.  相似文献   

12.
Unitary responses of the caudate nucleus to stimulation of various parts of it were investigated by extracellular recording. Latent periods of response discharges varied from 3.5 to 40 msec. Most neurons were excited by stimulation of the most rostral part of the head of the caudate nucleus. Irrespective of the site of stimulation, in most cases responses consisted of initial excitation in the form of one or, less frequently, two discharges followed by a period of depression of spontaneous activity. Recovery of activity took place gradually, without postinhibitory facilitation. No afterdischarges or periodic repetitions of spikes were observed after the initial response. Repetitive stimulation of the caudate nucleus showed that the neurons of this nucleus reproduce frequencies of stimulation badly above 30/sec, and under these circumstances in many cases they continued to discharge on average at a frequency of 5–15/sec. The results are examined from the standpoint of participation of the caudate nucleus in the formation of spindle activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 497–506, September–October, 1976.  相似文献   

13.
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in?vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.  相似文献   

14.
The response of caudate nucleus neurons to acoustic stimulation (a click at 0.5 Hz) was investigated during chronic experimentation in cats using intracellular techniques and reversible blockage of the thalamic centrum medianum produced by anode polarization. Having analyzed poststimulus histograms it was found that the response of phasic activation to an acoustic signal decreased, and disappeared in 52% of neurons. A reduction in the level of spontaneous activity was also observed in neurons of the caudate nucleus. The significance of a direct pathway from the thalamic centrum medianum to the caudate nucleus is discussed from the viewpoint of acoustic signal transmission to caudate nucleus neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 92–99, January–February, 1986.  相似文献   

15.
Spontaneous and evoked unit activity in response to repeated application of clicks at a frequency of 0.3–2.0 Hz in the caudate nucleus was studied by an extracellular recording technique in chronic experiments on cats. Four types of spontaneous unit activity in the caudate nucleus were distinguished. Altogether 44% of neurons tested responded by changes in spontaneous activity to clicks. Five types of responses of caudate neurons to clicks were discovered: phasic excitation, phasic inhibition, tonic activation, tonic inhibition, and mixed tonic responses; the commonest type was tonic activation. During prolonged stimulation by clicks extinction of the phasic responses was not observed. Complete or partial extinction of tonic responses in the course of frequent repetition of stimulation was observed in 33% of responding neurons. The question of possible convergence of specific and nonspecific influences on caudate neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 28–35, January–February, 1980.  相似文献   

16.
Abstract— The effect of diazepam and pentobarbital on γ-aminobutyric acid (GABA) levels, the aminooxyacetic acid (AOAA)-induced accumulation of GABA, and the in vitro activity of l -glutamate 1-carboxyl-lyase (EC 4.1.1.15) [GAD] were studied in various regions of rat brain. Diazepam increased GABA levels in the substantia nigra, diminished the AOAA-induced accumulation of GABA in the caudate nucleus, cingulate, parietal and entorhinal cortex and had no effect on GABA accumulation in the pyriform and cerebellar cortex. After pentobarbital, GABA levels were elevated in the caudate nucleus but decreased in the parietal and pyriform cortex; the AOAA-induced accumulation of GABA also diminished in all cortical regions studied. No correlation was found between the apparent changes in GABA synthesis, as estimated by accumulation after inhibition of 4-aminobutyrate-2-oxoglu-tarate (EC 2.6.1.19) [GABA-T] with AOAA, and the changes in GABA levels induced by these drugs. The reduction in AOAA-induced GABA accumulation after diazepam and pentobarbital treatment was most pronounced in regions which showed the greatest accumulation of GABA after AOAA administration. Neither diazepam nor pentobarbital administration affected the activity of GAD in homogenates of cingulate cortex. Chlorpromazine, at a dose which decreased spontaneous activity, enhanced the AOAA-induced GABA accumulation in the cingulate cortex, suggesting that drug-induced sedation is not necessarily associated with decreased GABA synthesis. While regional differences were observed in the effects of diazepam and pentobarbital on GABA synthesis, both agents appear to inhibit GABA synthesis in vivo and both do so, in at least some brain areas, at subsedative doses.  相似文献   

17.
To examine the role of the GABA(A) receptor mediating systems in the control of gonadotropin-releasing hormone (GnRH) release from the ventromedial-infundibular region (VEN/IN) of anestrous ewes, the extracellular concentrations of GnRH, beta-endorphin, noradrenaline (NE), dopamine (DA), 4-hydroxy-3-methoxy-phenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC) were quantified during local stimulation or blockade of GABA(A) receptors with muscimol or bicuculline respectively. In most animals stimulation of GABA(A) receptors significantly attenuates GnRH release with concomitant increase of beta-endorphin and DA release, and MHPG and DOPAC levels. Blockade of the GABA(A) receptors generally did not affect GnRH and NE release but inhibited in most animals beta-endorphin release and decreased dopaminergic activity. These results suggest, that GABA may suppress GnRH release directly by GABA(A) receptor mechanism on the axon terminal of GnRH neurons or indirectly by GABA(A) receptor processes activating beta-endorphin-ergic and dopaminergic neurons in the VEN/NI. On the basis of these results in could not be distinguish between these two events. The decrease in extracellular beta-endorphin and dopamine concentration without evident changes in the GnRH level during GABA(A) receptor blockade may suggest that other neuronal systems are involved in this effect.  相似文献   

18.
Ng  Chee-Hon  Wang  Xin-Sheng  Ong  Wei-Yi 《Brain Cell Biology》2000,29(8):595-603
The present study aimed to elucidate the distribution of the GABA transporter GAT-3 in the monkey basal ganglia and brainstem. Very dense GAT-3 immunoreactivity was observed in the medial septum, diagonal band, basal nucleus of Meynert, thalamus, globus pallidus, and substantia nigra. Moderate levels were observed in the subthalamic nucleus, periaqueductal grey, spinal trigeminal and vestibular nuclei. A general light level of staining was observed in the remainder of the brainstem regions, and very light staining was observed in the caudate nucleus and putamen. Electron microscopy showed that GAT-3 immunoreactivity was present in cell bodies with light cytoplasm and dense bundles of glial filaments, and features of astrocytes. Large numbers of astrocytic processes were also labeled in the neuropil. The cell bodies and processes of neurons were unlabeled. Further study is necessary to elucidate GAT-3 expression in neurological conditions, including hyperalgesia and Parkinson's disease.  相似文献   

19.
Repeated (once a day for 8 days) but not single administration of estradiol benzoate (10 micrograms/kg, s.c.) induced a sevenfold increase in anterior pituitary gamma-aminobutyric acid (GABA) concentration in male rats. GABA concentration also increased in the median eminence whereas no changes or decreases were observed in other brain regions including hypothalamic arcuate nucleus, lateral septum, hippocampus, caudate nucleus, and substantia nigra. Eight-day estradiol benzoate injection also enhanced the Vmax of median eminence glutamate decarboxylase activity without affecting the Km of the enzyme for glutamic acid. Taken together, these results suggest that repeated administration of estradiol benzoate increases the activity of the tubero-infundibular GABAergic system in male rats.  相似文献   

20.
Although GABA and piperidine-4-sulphonic acid depolarize I a afferent terminations in the cat spinal cord by activation of bicuculline-sensitive GABA receptors, no evidence was obtained for a bicuculline-sensitive alteration by either gabamimetic of the electrical threshold of rubrospinal terminations in the spinal intermediate nucleus. The terminal axonal arborizations in the spinal cord of neurons in the red nucleus thus do not have GABA receptors similar to those on the cell bodies. The results are discussed in relation to the depolarizing action of GABA on some central neurons, and on neurons with peripheral cell bodies, and to probable differences in the intracellular chloride content of neurons having peripheral or central cell bodies, and thus of different embryological origin. A presynaptic depolarizing inhibitory process mediated by GABA appears to be confined to the terminals of primary afferent fibres in the mammalian central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号