首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
BACKGROUND: A major characteristic of asthmatic airways is an increase in mucin (the glycoprotein component of mucus) producing and secreting cells, which leads to increased mucin release that further clogs constricted airways and contributes markedly to airway obstruction and, in the most severe cases, to status asthmaticus. Asthmatic airways show both a hyperplasia and metaplasia of goblet cells, mucin-producing cells in the epithelium; hyperplasia refers to enhanced numbers of goblet cells in larger airways, while metaplasia refers to the appearance of these cells in smaller airways where they normally are not seen. With the number of mucin-producing and secreting cells increased, there is a coincident hypersecretion of mucin which characterizes asthma. On a cellular level, a major regulator of airway mucin secretion in both in vitro and in vivo studies has been shown to be MARCKS (myristoylated alanine-rich C kinase substrate) protein, a ubiquitous substrate of protein kinase C (PKC). GENERAL SIGNIFICANCE: In this review, properties of MARCKS and how the protein may regulate mucin secretion at a cellular level will be discussed. In addition, the roles of MARCKS in airway inflammation related to both influx of inflammatory cells into the lung and release of granules containing inflammatory mediators by these cells will be explored. This article is part of a Special Issue entitled: Biochemistry of Asthma.  相似文献   

3.
4.
PAR-2, a member of a family of G-protein-coupled receptors, can be activated by serine proteases via proteolytic cleavage. PAR-2 expression is known to be upregulated in respiratory epithelium subsequent to inflammation in asthma and chronic obstructive pulmonary disease (COPD). Since these diseases also are characterized by excessive mucus production and secretion, we investigated whether PAR-2 could be linked to mucin hypersecretion by airway epithelium. Normal human bronchial epithelial (NHBE) cells in primary culture or the human bronchial epithelial cell lines, NCI-H292 and HBE-1, were used. NHBE, NCI-H292, and HBE-1 cells expressed prominent levels of PAR-2 protein. Short-term (30min) exposure of cells to the synthetic PAR-2 agonist peptide (SLIGKV-NH2) elicited a small but statistically significant increase in mucin secretion at high concentrations (100microM and 1000microM), compared to a control peptide with reversed amino acid sequence (VKGILS-NH2). Neither human lung tryptase nor bovine pancreatic trypsin, both PAR-2 agonists, affected NHBE cell mucin secretion when added over a range of concentrations. Knockdown of PAR-2 expression by siRNA blocked the stimulatory effect of the AP. The results suggest that, since PAR-2 activation only weakly increases mucin secretion by human airway epithelial cells in vitro, PAR-2 probably is not a significant contributor to mucin hypersecretion in inflamed airways.  相似文献   

5.
The airway goblet cell   总被引:23,自引:0,他引:23  
The two principal features of airway goblet cells are rapid secretion of mucin onto the airway surface and increase in number (hyperplasia) with chronic inhaled 'insult'. The first is associated with homeostasis, the latter with pathophysiology. Myristoylated alanine-rich C kinase (MARCKS) is a key molecule regulating mucin exocytosis, a process also involving cooperative interaction between protein kinase (PK) C and PKG. The epidermal growth factor (EGF) cascade and calcium activated chloride channels (CLCA) are key signalling molecules involved in development of goblet cell hyperplasia, with Bcl-2, an inhibitor of apoptosis, involved in maintenance of hyperplasia. Goblet cell hyperplasia and associated mucus hypersecretion is a pathophysiological feature of asthma and chronic obstructive pulmonary disease (COPD). Novel therapeutic strategies to prevent or reverse goblet cell hyperplasia include inhibitors of EGF receptor tyrosine kinase and CLCA, of which viable pharmaceutical molecules are now available for clinical trial in hypersecretory conditions of the airways.  相似文献   

6.
Excessive mucus production by airway epithelium is a major characteristic of a number of respiratory diseases, including asthma, chronic bronchitis, and cystic fibrosis. However, the signal transduction pathways leading to mucus production are poorly understood. Here we examined the potential role of IkappaB kinase beta (IKKbeta) in mucus synthesis in vitro and in vivo. Tumor necrosis factor-alpha (TNF-alpha) or transforming growth factor-alpha stimulation of human epithelial cells resulted in mucus secretion as measured by MUC5AC mRNA and protein. TNF-alpha stimulation induced IKKbeta-dependent p65 nuclear translocation, mucus synthesis, and production of cytokines from epithelial cells. TNF-alpha, but not transforming growth factor-alpha, induced mucus production dependent on IKKbeta-mediated NF-kappaB activation. In vivo, TNF-alpha induced NF-kappaB as determined by whole mouse body bioluminescence. This activation was localized to the epithelium as revealed by LacZ staining in NF-kappaB-LacZ transgenic mice. TNF-alpha-induced mucus production in vivo could also be inhibited by administration into the epithelium of an IKKbeta dominant negative adenovirus. Taken together, our results demonstrated the important role of IKKbeta in TNF-alpha-mediated mucus production in airway epithelium in vitro and in vivo.  相似文献   

7.
Asthma, chronic obstructive pulmonary disorder (COPD), and cystic fibrosis (CF), chronic diseases of the airways, are characterized by symptoms such as inflammation of the lung tissue, mucus hypersecretion, constriction of the airways, and excessive fibrosis of airway tissue. Transforming growth factor (TGF)-beta, a cytokine that affects many different cell processes, has an important role in the lungs of patients with some of these chronic airway diseases, especially with respect to airway remodeling. Eosinophils can be activated by and are a major source of TGF-beta in asthma. The action of TGF-beta also shows associations with other cell types, such as T cells and neutrophils, which are involved in the pathogenesis of asthma. TGF-beta can perpetuate the pathogenesis of COPD and CF, as well, through its induction of inflammation via release from and action on different cells. The intracellular signaling induced by TGF-beta in various cell types has been elucidated and may point to mechanisms of action by TGF-beta on different structural or immune cells in these airway diseases. Some possible treatments, especially that prevent the deleterious airway changes induced by the action of either eosinophils or TGF-beta in asthma, have been investigated. TGF-beta-induced signaling pathways, especially those in different cell types in asthma, COPD, or CF, may provide potential therapeutic targets for the treatment of some of the most devastating airway diseases.  相似文献   

8.
MUC5AC is the main gel-forming mucin expressed by goblet cells of the airways and stomach where it protects the underlying epithelia. We expressed the C-terminal cysteine-rich part of the human MUC5AC mucin in CHO-K1 cells (Chinese-hamster ovary K1 cells) where it formed disulfide-linked dimers in the ER (endoplasmic reticulum). After reducing the disulfide bonds of these dimers, not only the expected monomers were found, but also two smaller fragments, indicating that the protein was partially cleaved. The site of cleavage was located at an Asp-Pro bond situated in a GDPH (Gly-Asp-Pro-His) sequence found in the vWD4 (von Willebrand D4) domain. This sequence is also found in the human MUC2 mucin, previously shown to be cleaved at the same site by a slow, non-enzymatic process triggered by a pH below 6 [Lidell, Johansson and Hansson (2003) J. Biol. Chem. 278, 13944-13951]. In contrast with this, the cleavage of MUC5AC started already in the neutral ER. However, it continued and was slightly accelerated at a pH below 6.5, a pH found in the later parts of the secretory pathway. The cleavage generated a reactive group in the new C-terminus that could link the protein to a primary amine. No cleavage of MUC5AC has so far been reported. By using an antibody reacting with the C-terminal cleavage fragment, we could verify that the cleavage occurs in wild-type MUC5AC produced by HT-29 cells. The cleavage of MUC5AC and the generation of the reactive new C-terminus could contribute to the adherent and viscous mucus found at chronic lung diseases such as asthma and cystic fibrosis, characterized by mucus hypersecretion and lowered pH of the airways.  相似文献   

9.
The ion transport defects reported for human cystic fibrosis (CF) airways are reproduced in nasal epithelia of the CF mouse. Although this tissue has been studied in vivo using the nasal potential difference technique and as a native tissue mounted in the Ussing chamber, little information is available on cultured murine nasal epithelia. We have developed a polarized cell culture model of primary murine nasal epithelia in which the CF tissue exhibits not only a defect in cAMP-mediated Cl- secretion but also the Na+ hyperabsorption and upregulation of the Ca2+-activated Cl- conductance observed in human airways. Both the wild-type and CF cultures were constituted predominantly of undifferentiated cuboidal columnar cells, with most cultures exhibiting a small number of ciliated cells. Although no goblet cells were observed, RT-PCR demonstrated the expression of Muc5ac RNA after approximately 22 days in culture. The CF tissue exhibited an adherent layer of mucus similar to the mucus plaques reported in the distal airways of human CF patients. Furthermore, we found that treatment of CF preparations with a Na+ channel blocker for 7 days prevented formation of mucus adherent to epithelial surfaces. The cultured murine nasal epithelial preparation should be an excellent model tissue for gene transfer studies and pharmacological studies of Na+ channel blockers and mucolytic agents as well as for further characterization of CF ion transport defects. Culture of nasal epithelia from DeltaF508 mice will be particularly useful in testing drugs that allow DeltaF508 CFTR to traffic to the membrane.  相似文献   

10.
The term chronic bronchitis has been criticised because it is associated with hypersecretion of mucus rather than bronchial inflammation. This study was designed to establish the presence or absence of clinical chronic bronchitis and measure pulmonary function in 45 patients about to undergo resection of the lung. The condition in the cartilaginous and small airways and the severity of the emphysema were then measured in the resected specimen. The results from 20 patients who had clinical chronic bronchitis were compared with those in 25 patients who did not. The data show that patients with chronic bronchitis had greater inflammation (a) on mucosal surfaces (p less than 0.05) of all bronchi larger than 2 mm luminal diameter and (b) around glands (p less than 0.005) and gland ducts (p less than 0.05) in bronchi larger than 4 mm diameter. A variable degree of inflammation was present in the submucosa of smaller bronchi. The groups had equivalent proportions of mucous glands and Reid''s indices in central airways, and no differences were noted in measurements of pulmonary function, condition of small airways, or emphysema. These data show that the term chronic bronchitis is justified by inflammation of cartilaginous airways and suggest that this abnormality may be the cause of the chronic productive cough.  相似文献   

11.
Induction of mucus hypersecretion in the airway epithelium by Th2 cytokines is associated with the expression of TMEM16A, a Ca2+-activated Cl- channel. We asked whether exposure of airway epithelial cells to bacterial components, a condition that mimics the highly infected environment occurring in cystic fibrosis (CF), also results in a similar response. In cultured human bronchial epithelial cells, treatment with pyocyanin or with a P. aeruginosa culture supernatant caused a significant increase in TMEM16A function. The Ca2+-dependent Cl- secretion, triggered by stimulation with UTP, was particularly enhanced by pyocyanin in cells from CF patients. Increased expression of TMEM16A protein and of MUC5AC mucin by bacterial components was demonstrated by immunofluorescence in CF and non-CF cells. We also investigated TMEM16A expression in human bronchi by immunocytochemistry. We found increased TMEM16A staining in the airways of CF patients. The strongest signal was observed in CF submucosal glands. Our results suggest that TMEM16A expression/function is upregulated in CF lung disease, possibly as a response towards the presence of bacteria in the airways.  相似文献   

12.
Chronic obstructive pulmonary disease affects 64 million people and is currently the fourth leading cause of death worldwide. Chronic obstructive pulmonary disease includes both emphysema and chronic bronchitis, and in the case of chronic bronchitis represents an inflammatory response of the airways that is associated with mucus hypersecretion and obstruction of small airways. Recently, it has emerged that exposure to cigarette smoke (CS) leads to an inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel, causing airway surface liquid dehydration, which may play a role in the development of chronic bronchitis. CS rapidly clears CFTR from the plasma membrane and causes it to be deposited into aggresome-like compartments. However, little is known about the mechanism(s) responsible for the internalization of CFTR following CS exposure. Our studies revealed that CS triggered a rise in cytoplasmic Ca2+ that may have emanated from lysosomes. Furthermore, chelation of cytoplasmic Ca2+, but not inhibition of protein kinases/phosphatases, prevented CS-induced CFTR internalization. The macrolide antibiotic bafilomycin A1 inhibited CS-induced Ca2+ release and prevented CFTR clearance from the plasma membrane, further linking cytoplasmic Ca2+ and CFTR internalization. We hypothesize that CS-induced Ca2+ release prevents normal sorting/degradation of CFTR and causes internalized CFTR to reroute to aggresomes. Our data provide mechanistic insight into the potentially deleterious effects of CS on airway epithelia and outline a hitherto unrecognized signaling event triggered by CS that may affect the long term transition of the lung into a hyper-inflammatory/dehydrated environment.  相似文献   

13.
A method which will reduce significantly the viscosity of epithelial mucus is essential to the physiological mechanisms involved in the mobilization and removal of such secretions. The life expectancy of patients with chronic pulmonary conditions and cystic fibrosis has been considerably increased and consequently the problem of liquefying mucin acquires new importance. In view of these considerations, as well as to facilitate research into the structural relationship of the glycoprotein macromolecule, a systematic investigation of mucolysis was undertaken using gastric mucin. Three amides, carbamide, acetamide and formamide, were found to dissolve gastric gel mucin with minimal degradation, and rapidly disperse the viscous secretions produced in pathological conditions of the tracheobronchial tree. Their effect on secretions from patients with cystic fibrosis and bronchiectasis is dramatic, and within five minutes of adding the reagent the flow time was reduced by at least 95%. Clinical studies were carried out with carbamide (urea in anhydrous, lyophilized, sterile powder form) in 32 patients with a variety of bronchial conditions, including chronic bronchitis, cystic fibrosis, asthma, bronchiectasis and emphysema. With the concentrations used, no irritant, bronchospastic or other reactions were observed.It is concluded that amides of this type have at least two actions on the epithelial mucous secretion: (1) breakage of the three-dimensional gel structure and (2) a slower reduction in viscosity followed by solution of the solid material.  相似文献   

14.
The susceptibility of cystic fibrosis patients to bacterial pathogens is associated with deficient airway antimicrobial peptide activity, and airway-surface-liquid dehydration with decreased transport velocity and hypersecretion of mucus. Susceptibility to Pseudomonas aeruginosa infection has been linked to the role of the cystic fibrosis transmembrane conductance regulator protein as a receptor for P. aeruginosa. Binding of P. aeruginosa coordinates lung clearance as part of innate immunity. The function of CFTR in innate immunity to P. aeruginosa infection is multifactorial, with one key component being a specific ligand-receptor interaction between the protein and the microbe.  相似文献   

15.
Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.  相似文献   

16.
17.
Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.  相似文献   

18.
Stimuli-induced expression of certain mucin genes has been demonstrated to occur as a result of ligand-dependent activation of the epidermal growth factor receptor (EGFR). In particular, MUC5AC expression can be induced by cigarette-smoke, neutrophil elastase and lipopolysaccharide (LPS) following activation of tumour necrosis factor alpha-converting enzyme. We now show that a large of number of stimuli relevant to the cystic fibrosis lung - neutrophil elastase, LPS, Pam3Cys-Ser-(Lys)4 Hydrochloride (a lipopeptide analogue), CpG DNA (which mimics bacterial DNA) and cystic fibrosis bronchoalveolar lavage fluid - can activate MUC1 and 2 expression as well as MUC5AC expression in lung epithelial cells via an EGFR-dependent mechanism. In addition, we demonstrate that the immunomodulatory anti-protease, secretory leucoprotease inhibitor, can inhibit stimuli-induced MUC1, 2 and 5AC expression via a mechanism that is primarily dependent on the inhibition of transforming growth factor type alpha release. Therefore, mucin gene expression, induced by cystic fibrosis respiratory stimuli, can be inhibited by secretory leucoprotease inhibitor indicating its potential importance as an anti-mucin agent in cystic fibrosis and other chronic lung diseases characterized by mucus hypersecretion.  相似文献   

19.
HJ Lee  YM Yang  K Kim  DM Shin  JH Yoon  HJ Cho  JY Choi 《PloS one》2012,7(8):e43188
Protease-activated receptor 2 (PAR2), a G protein-coupled receptor expressed in airway epithelia and smooth muscle, plays an important role in airway inflammation. In this study, we demonstrated that activation of PAR2 induces mucus secretion from the human airway gland and examined the underlying mechanism using the porcine and murine airway glands. The mucosa with underlying submucosal glands were dissected from the cartilage of tissues, pinned with the mucosal side up at the gas/bath solution interface of a physiological chamber, and covered with oil so that secretions from individual glands could be visualized as spherical bubbles in the oil. Secretion rates were determined by optical monitoring of the bubble diameter. The Ca(2+)-sensitive dye Fura2-AM was used to determine intracellular Ca(2+) concentration ([Ca(2+)](i)) by means of spectrofluorometry. Stimulation of human tracheal mucosa with PAR2-activating peptide (PAR2-AP) elevated intracellular Ca(2+) and induced glandular secretion equal to approximately 30% of the carbachol response in the human airway. Porcine gland tissue was more sensitive to PAR2-AP, and this response was dependent on Ca(2+) and anion secretion. When the mouse trachea were exposed to PAR2-AP, large amounts of secretion were observed in both wild type and ΔF508 cystic fibrosis transmembrane conductance regulator mutant mice but there is no secretion from PAR-2 knock out mice. In conclusion, PAR2-AP is an agonist for mucus secretion from the airway gland that is Ca(2+)-dependent and cystic fibrosis transmembrane conductance regulator-independent.  相似文献   

20.
Mucus hypersecretion and persistent airway inflammation are common features of various airway diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. One key question is: does the associated airway inflammation in these diseases affect mucus production? If so, what is the underlying mechanism? It appears that increased mucus secretion results from increased mucin gene expression and is also frequently accompanied by an increased number of mucous cells (goblet cell hyperplasia/metaplasia) in the airway epithelium. Many studies on mucin gene expression have been directed toward Th2 cytokines such as interleukin (IL)-4, IL-9, and IL-13 because of their known pathophysiological role in allergic airway diseases such as asthma. However, the effect of these cytokines has not been definitely linked to their direct interaction with airway epithelial cells. In our study, we treated highly differentiated cultures of primary human tracheobronchial epithelial (TBE) cells with a panel of cytokines (interleukin-1alpha, 1beta, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, and tumor necrosis factor alpha). We found that IL-6 and IL-17 could stimulate the mucin genes, MUC5B and MUC5AC. The Th2 cytokines IL-4, IL-9, and IL-13 did not stimulate MUC5AC or MUC5B in our experiments. A similar stimulation of MUC5B/Muc5b expression by IL-6 and IL-17 was demonstrated in primary monkey and mouse TBE cells. Further investigation of MUC5B expression demonstrated that IL-17's effect is at least partly mediated through IL-6 by a JAK2-dependent autocrine/paracrine loop. Finally, evidence is presented to show that both IL-6 and IL-17 mediate MUC5B expression through the ERK signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号