首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large segment of the population is modifying its dietary cholesterol intake to achieve a healthier life-style. However, all individuals do not respond equally. We have investigated the effects that that two physiologically important polymorphisms in the apolipoprotein (apo) E and B genes have on the responses of plasma lipid, lipoprotein, and apolipoprotein levels to a high-cholesterol diet. Over a 6-wk period, individuals were prescribed two diets, one consisting of 300 mg dietary cholesterol/d for 3 wk and one consisting of 1,700 mg dietary cholesterol/d for 3 wk. Total cholesterol, low-density-lipoprotein cholesterol (LDL-C), and apo B levels were significantly increased on the high-cholesterol diet. Average total cholesterol (numbers in parentheses are SDs) went from 167.6 (23.4) mg/dl on the low-cholesterol diet to 190.8 (36.2) mg/dl on the high-cholesterol diet; LDL-C went from 99.9 (24.8) mg/dl to 119.2 (33.4) mg/dl, and apo B went from 74.9 (24.5) mg/dl to 86.8 (29.5) mg/dl. In 71 individuals, the frequencies of the apo epsilon 2, epsilon 3, and epsilon 4 alleles were .09, .84, and .07, respectively. The frequency of the longer, apo B signal peptide allele (5'beta SP27) was .68. Apo epsilon 2/3 individuals had significantly lower LDL-C levels than did epsilon 3/3 homozygotes, on both the low-cholesterol diet (LDL-C lower by 21 mg/dl) and the high-cholesterol diet (LDL-C lower by 27 mg/dl). Average triglyceride levels were significantly different among apo B signal peptide genotypes, with the 5'beta SP27/37 homozygotes having the lowest levels (70 mg/dl). When individuals were switched from the low-cholesterol diet to the high-cholesterol diet, in no case were the average responses in lipid levels significantly different among apo E or B genotypes. Therefore, these gene loci do not have a major effect on the response of lipid levels to increased dietary cholesterol.  相似文献   

2.
Human apolipoprotein (apo) E is polymorphic. We have investigated the effect of the apo-E polymorphism on quantitative plasma levels of apo E, apo B, and total cholesterol in a sample of 563 blood-bank donors from Marburg and Giessen, West Germany. The relative frequencies of the epsilon 2, epsilon 3, and epsilon 4 alleles are .063, .793, and .144, respectively. The average effects of the epsilon 2 allele are to raise apo-E levels by 0.95 mg/dl, lower apo B levels by 9.46 mg/dl, and lower total cholesterol levels by 14.2 mg/dl. The average effects of the epsilon 4 allele are to lower apo-E levels by 0.19 mg/dl, to raise apo-B levels by 4.92 mg/dl, and to raise total cholesterol levels by 7.09 mg/dl. The average effects of the epsilon 3 allele are near zero for all three phenotypes. The apo-E polymorphism accounts for 20% of the variability of plasma apo-E levels, 12% of the variability of plasma apo-B levels, and 4% of the variability of total plasma cholesterol levels. The inverse relationship between the genotype-specific average apo-E levels and both the genotype-specific average apo-B and cholesterol levels is offset by a positive relationship between apo-E levels and both apo-B and cholesterol levels within an apo-E genotype. The apo-E polymorphism also has a direct effect on the correlation between apo-E and total cholesterol levels. The implication of these results on multivariate genetic analyses of these phenotypes is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Human apolipoproteins (apo) E and apo A-IV are polymorphic with significantly different allele frequencies among different ethnic groups. Whereas the variation at the apo E gene locus affects plasma cholesterol levels in all populations studied so far and is associated with longevity in Caucasians, the influence of the common apo A-IV polymorphism on plasma lipoproteins has not been unanimously accepted. We have therefore determined the common apo E and apo A-IV polymorphisms by isoelectric focusing, calculated the respective allele frequencies and studied their effects on plasma lipoproteins in a random sample of 240 nonrelated Turkish subjects (141 males, 99 females) living in Germany and originating from central and eastern Anatolia. When compared with the German population and other Caucasians in Europe a prominence of the apo ɛ3 allele frequency (0.885) was accompanied by a decrease in the frequencies of both the apo ɛ2 allele (0.048) and the apo ɛ4 allele (0.067). Thus, the Turkish population studied here clustered with populations mainly from southern Europe and Japan, which have low ɛ2 and ɛ4 allele frequencies. Also, the frequency of the A-IV-1 allele was higher (0.967) and that of the A-IV-2 allele lower (0.033) in the Turkish subjects studied than in other populations. At an average level of total cholesterol of 194.5 ± 45 mg/dl, no significant influence of the A-IV alleles on plasma lipoproteins was seen. However, apo E and apo B differed significantly between apo E phenotypes, with high levels of apo E and low levels of cholesterol and apo B in carriers of the ɛ2 allele, and vice versa for the ɛ4 allele. The average cholesterol excess for the ɛ2 allele was –7.95 mg/dl, for the ɛ3 allele, –1.34, and for the ɛ4 allele, +14.15 mg/dl. Thus, despite the unusual frequency distribution of the apo E alleles, their effects on plasma lipoproteins are within the range reported for other populations in Europe. Received: 10 April 1995 / Revised: 25 March 1996  相似文献   

4.
Summary Apolipoprotein(a) [apo(a)] exhibits a genetic size polymorphism explaining about 40% of the variability in lipoprotein(a) [Lp(a)] concentration in Tyroleans. Lp(a) concentrations and apo(a) phenotypes were determined in 7 ethnic groups (Tyrolean, Icelandic, Hungarian, Malay, Chinese, Indian, Black Sudanese) and the effects of the apo(a) size polymorphism on Lp(a) levels were estimated in each group. Average Lp(a) concentrations were highly significantly different among these populations, with the Chinese (7.0mg/dl) having the lowest and the Sudanese (46mg/dl) the highest levels. Apo(a) phenotype and derived apo(a) allele frequencies were also significantly different among the populations. Apo(a) isoform effects on Lp(a) levels were not significantly different among populations. Lp(a) levels were however roughly twice as high in the same phenotypes in the Indians, and several times as high in the Sudanese, compared with Caucasians. The size variation of apo(a) explains from 0.77 (Malays) to only 0.19 (Sudanese) of the total variability in Lp(a) levels. Together these data show (I) that there is considerable heterogeneity of the Lp(a) polymorphism among populations, (II) that differences in apo(a) allele frequencies alone do not explain the differences in Lp(a) levels among populations and (III) that in some populations, e.g. Sudanese Blacks, Lp(a) levels are mainly determined by factors that are different from the apo(a) size polymorphism.  相似文献   

5.
To quantify the effect of the apolipoprotein (apo) E polymorphism on the magnitude of postprandial lipemia, we have defined its role in determining the response to a single high-fat meal in a large sample of (N = 474) individuals taking part in the biethnic Atherosclerosis Risk in Communities Study. The profile of postprandial response in plasma was monitored over 8 h by triglyceride, triglyceride-rich lipoprotein (TGRL)-triglyceride, apo B-48/apo B-100 ratio, and retinyl palmitate concentrations, and the apo E polymorphism was determined by DNA amplification and digestion. The frequency of the apo E alleles and their effects on fasting lipid levels in this sample were similar to those reported elsewhere. Postprandial plasma retinyl palmitate response to a high-fat meal with vitamin A was significantly different among apo E genotypes, with delayed clearance in individuals with an epsilon 2 allele, compared with epsilon 3/3 and epsilon 3/4 individuals. In the sample of 397 Caucasians, average retinyl palmitate response was 1,489 micrograms/dl in epsilon 2/3 individuals, compared with 1,037 micrograms/dl in epsilon 3/3 individuals and 1,108 micrograms/dl in epsilon 3/4 individuals. The apo E polymorphism accounted for 7.1% of the interindividual variation in postprandial retinyl palmitate response, a contribution proportionally greater than its well-known effect on fasting LDL-cholesterol. However, despite this effect on postprandial retinyl palmitate, the profile of postprandial triglyceride response was not significantly different among apo E genotypes. The profile of postprandial response was consistent between the sample of Caucasians and a smaller sample of black subjects. While these data indicate that the removal of remnant particles from circulation is delayed in subjects with the epsilon 2/3 genotype, there is no reported evidence that the epsilon 2 allele predisposes to coronary artery disease (CAD). The results of this study provide not only a reliable estimate of the magnitude of the effect of the apo E polymorphism on various measurements commonly used to characterize postprandial lipemia, but also provide mechanistic insight into the effects of the apo E gene polymorphism on postprandial lipemia and CAD.  相似文献   

6.
Summary The frequencies of genetic apo E isoforms E2, E3 and E4 were determined in 523 patients with myocardial infarction and compared to those in a control group (1031 blood donors). A significant difference in the frequency of apo E4 was noted between patients and controls (0.05> P>0.025). No differences in the frequencies of isoforms E3 and E2 were observed. In particular, there was no significant difference between the two groups in the frequency of apo E2 homozygosity. a condition that is associated with type III hyperlipoproteinemia. However, all E2 homozygote survivors of myocardial infarction had hyperlipoproteinemia type III (cholesterol 269±29 mg/dl; triglyceride 419±150 mg/dl; age 54±14 years; N=5). On the contrary, E2 homozygote controls (all apo E-2/2 blood donors and their apo E-2/2 relatives who were from the same age range as the patients) had primary dysbetalipoproteinemia but normal or subnormal plasma cholesterol concentrations (cholesterol 184±28 mg/dl; triglyceride 151±52 mg/dl; age 56±13 years; N=11). This indicates that E2 homozygotes with hyperlipoproteinemia type III who occur rarely in the population but comprise about 1% of myocardial infarction patients have a markedly increase risk for coronary atherosclerosis, whereas the risk for E2 homozygotes with normal or subnormal plasma cholesterol (=primary dysbetalipoproteinemia) may be considerably lower than for the general population. The data illustrate the complex relationship between apo E genes, lipid levels, and risk for atherosclerosis.  相似文献   

7.
Summary Human apolipoprotein A-IV (apo A-IV) exhibits a genetic polymorphism with two common alleles, A-IV1 and A-IV2, in Caucasian populations. We have investigated this polymorphism in the Icelandic population. The frequencies of the two alleles are significantly different from middel European populations with a higher frequency of the A-IV2 allele (0.117 versus 0.077) occurring in Iceland. The alleles at the apo A-IV locus have significant effects on plasma high density lipoprotein cholesterol (HDL-C) and triglyceride levels. The average effect of the A-IV2 allele is to raise HDL-C by 4.9 mg/dl and to lower triglyceride levels by 19.4mg/dl. We estimate that the genetic variability at the apo A-IV gene locus accounts for 3.1% of the total variability of HDL-C and for 2.8% of the total variability of triglycerides in the population from Iceland. This confirms and extends our previous observations on apo A-IV allele effects in Tyroleans in an independent population.  相似文献   

8.
Variation at the apolipoprotein E (apo E) gene locus affects cholesterol concentrations, the risk for atherosclerosis and Alzheimer disease (AD), and is associated with longevity in Caucasians. We have determined apo E gene frequencies and effects on cholesterol levels in Khoi San (Bushmen) from South Africa. The frequency of the apo 4 allele (0.37), which confers dose-dependent susceptibility to atherosclerosis and AD in Caucasians, was twice as high, and apo E4 homozygotes were 3–5 fold more frequent in the Khoi San ( 10%) compared with Caucasians (2%–3%). No significant effect of apo E variation on cholesterol concentration was noted in this non-Westernized population with low plasma cholesterol (mean cholesterol 149 mg/dl). This suggests that Bushmen carry a heavy genetic burden for these late-onset disorders if exposed to a Western lifestyle.  相似文献   

9.
Two sandwich-type enzyme immunoassays have been developed to measure apolipoproteins A-I and E in rabbit serum. Specific goat antibodies were purified by affinity chromatography and used both for coating and for preparing antibody-peroxydase conjugates. The sensitivity of these assays is sufficient to allow studies of apo A-I and E distribution in lipoproteins fractionated by gel filtration from 50 microliters of serum. In WHHL rabbits, apo A-I is 5-fold lower (5.2 +/- 2.5 mg/dl) and apo E is 8-fold higher (9.9 +/- 3.5 mg/dl) than in normolipidemic rabbits (29 +/- 4.3 mg/dl and 1.3 +/- 0.5 mg/dl, respectively). In hyperlipidemic rabbits, fed 2 months on a 0.5% cholesterol diet, the apo A-I level was similar (32 +/- 12 mg/dl) to that of normolipidemic rabbits, but the apo E level is 12-fold higher (15.1 +/- 5.5 mg/dl). In addition, HDL particles were enriched with cholesterol and apo E. The bulk of apo E and cholesterol is located in large beta-VLDL in diet-induced hyperlipidemia, whereas they are mainly located in smaller size beta-VLDL in WHHL rabbits. In normolipidemic rabbits apo E occurs mainly in HDL, and cholesterol is distributed in the main three lipoprotein fractions VLDL, LDL and HDL. Interestingly, HDL of WHHL rabbit are deficient in apo A-I. These results are compatible with profound perturbations of lipoprotein composition and metabolism in atherogenic hyperlipidemia.  相似文献   

10.
Human apolipoprotein E exhibits genetic polymorphism in all populations examined to date. By isoelectric focusing and immunoblotting, three common alleles have been demonstrated in 365 unrelated Nigerian blacks. Furthermore, the APO E genetic polymorphism's effect on quantitative levels of lipids and lipoproteins has been determined. The respective frequencies of the APO E*2, APO E*3, and APO E*4 alleles are .027, .677, and .296. The effect of APO E polymorphism is significant only on total cholesterol and low-density lipoprotein cholesterol. The average excesses of the APO E*2 allele are to lower total cholesterol and low-density lipoprotein cholesterol by 9.19 mg/dl and 11.11 mg/dl, respectively. The average excesses of the APO E*4 allele are to increase total cholesterol and low-density lipoprotein cholesterol by 5.64 mg/dl and 6.18 mg/dl, respectively. On the basis of the differences in (a) the distribution of APO E allele frequencies between the Nigerians and other populations and (b) dietary lipids, we propose a model that shows that lipid metabolism is influenced by the combined effects of the APO E polymorphism and environmental factors.  相似文献   

11.
The structural gene locus for apolipoprotein E (apo E) is polymorphic. Three common alleles (epsilon 2, epsilon 3, epsilon 4) code for three major isoforms in plasma and determine six apo E phenotypes that may be identified by isoelectric focusing on polyacrylamide. To establish what fraction of the inherited variation in a normal plasma lipid and lipoprotein profile is attributable to the segregation of the common alleles at the apo E gene locus, we have estimated the average apo E allelic effects on plasma cholesterol (C), triglycerides, very low-density lipoprotein (VLDL)-C, VLDL-apo B, low-density lipoprotein (LDL)-C, LDL-apo B, and high-density lipoprotein (HDL)-C in a representative sample of normolipidemic individuals from Ottawa, Canada. Data from published studies were also analyzed by the same statistical procedures. As much as 16% of the genetic variance (8.3% of the total variance) for LDL-C could be accounted for by the apo E gene locus. After correction for differences in age, sex, height, and weight, it was found that the epsilon 2 allele lowered and the epsilon 4 allele raised total cholesterol, LDL-C, and LDL-apo B. No other gene has been identified that contributes as much to normal cholesterol variability. Analysis of these data and those of others also indicates that the apo E locus imparts a differential susceptibility to a variety of factors that promote hyperlipidemia. The hypothesis is proposed that the epsilon 2 allele protects against coronary heart disease (CHD) and, hence, gives a reproductive advantage that is balanced by a predisposition to CHD when the epsilon 2 is combined with a second, independent causative factor to give a reproductive disadvantage. A similar mechanism is proposed for the maintenance of the epsilon 4 allele in the population.  相似文献   

12.
Apolipoproteins E and CI are the predominant components of triglyceride-rich lipoproteins. The genes are located in one gene cluster and both are polymorphic. Three allelic (epsilon2, epsilon3 and epsilon4) polymorphisms of the APOE gene influence plasma cholesterol levels. The distribution of these alleles differ between ethnic groups. PCR genotyping was used to determine the APOE and APOCI allele incidence in a representative group of 653 probands (302 men and 351 women) of Czech origin. The observed relative frequencies for the epsilon2, epsilon3 and epsilon4 alleles were 7.1 %, 82.0 % and 10.9 %, respectively, and are similar to other middle European populations. APO epsilon4 carriers have the highest and APO epsilon2 carriers the lowest levels of plasma total cholesterol (p<0.0001) and LDL cholesterol (p<0.0001). The frequency of the insertion (I) allele (HpaI restriction site present) of the APOCI polymorphism was 18.5 %. APOCI I/I homozygotes have the highest level of triglycerides (p<0.003). An almost complete linkage disequilibrium of the insertion allele of APOCI with the APOE alleles epsilon2 and epsilon4 has been detected and suggests that the deletion in the APOCI gene probably follows the deriving of all three APOE alleles on the APO epsilon3 allele background.  相似文献   

13.
Apolipoprotein[a] polymorphism has been investigated by sodium dodecyl sulfate polyacrylamide (5.37%) gel electrophoresis and immunoblotting using a standardized sample load in four ethnic groups: German, Ghanaian, Chinese, and San (Kalahari Bushmen). A total of 10 different apparent molecular weight (Mr) polymorphs, designated 1 to 10 with increasing Mr, were detected in greater than 99% of all individuals tested (German, 99%; Ghanaian, 99%; Chinese, 100%; San 100%). A null allele is therefore at most an infrequent variant in all populations. Polymorphs 6-10 were common to all four populations, while polymorphs 1-5 appeared to be relatively rare variants not universally detected in each group in the present study. The Chinese had the highest proportion of double-band phenotypes and the observed frequencies were not significantly different from those expected according to simple Mendelian inheritance, whereas the observed apo[a] phenotype distributions of the other three groups did not concur with those expected for Hardy Weinberg equilibrium. The German and Ghanaian groups displayed similar distributions of apo[a] phenotypes while the Chinese and San had significantly higher frequencies of polymorphs 9 and 10. Mean plasma Lp[a] concentrations in Ghanaians (36.2 +/- 31.5 mg/dl) were almost 2-fold greater than in Germans (18.7 +/- 23.1 mg/dl) and ca 1.65-fold greater than in either Chinese (22.9 +/- 18.3 mg/dl) or San (21.1 +/- 19.3 mg/dl). A strong inverse correlation was observed between apo[a] Mr and plasma Lp[a] concentration in Germans but this was much less pronounced in Ghanaians. While the mean plasma Lp[a] levels associated with polymorphs 1-6 were similar in both Germans (43.4 +/- 30.0 mg/dl) and Ghanaians (49.2 +/- 37.6 mg/dl), those Ghanaians with any combination of the polymorphs 9 and 10 had an almost 3-fold greater mean plasma Lp[a] level (20.6 +/- 11.3 mg/dl) than their German counterparts (7.8 +/- 5.7 mg/dl). It is therefore apparent that: 1) differences in apo[a] allele frequencies are not primarily responsible for differences in Lp[a] levels between populations; and 2) the greatest ethnic variation is observed in plasma Lp[a] concentrations associated with the high molecular weight apo[a] polymorphs.  相似文献   

14.
Apolipoprotein E (apoE) polymorphism is a genetic determinant of plasma lipid levels and of coronary heart disease (CHD) risk. We determined the apoE phenotypes and plasma lipid levels in 1577 youths aged 3 to 18 years in 1980. The subjects were randomly selected from five areas of Finland. ApoE phenotyping was performed directly from plasma by isoelectric focusing and immunoblotting. The apoE allele frequencies in the population sample were epsilon 2 = 0.039, epsilon 3 = 0.767, and epsilon 4 = 0.194. There were no differences in the apoE phenotype distribution between East and West Finland or between sexes. The concentrations of serum total cholesterol, low density lipoprotein cholesterol, and apolipoprotein B increased with apoE phenotype in the order of E2/2, E3/2, E4/2, E3/3, E4/3, and E4/4. This increase was already seen in 3-year-old children; it was observed in both sexes, but was clearer in males than in females. The mean levels of high density lipoprotein (HDL) cholesterol, apolipoprotein A-I, triglyceride, Lp[a] lipoprotein, and the activity of lecithin:cholesterol acyltransferase did not differ between the apoE phenotypes. The observed differences in serum cholesterol remained fairly stable during the 6-year follow-up from 1980 to 1986, while the mean serum cholesterol concentration in the whole study population decreased by 6.3%. This study confirms the reported higher frequency of the epsilon 4 allele in Finns as compared to most other populations; this may contribute to the high rates of CHD in Finland as compared to most other populations. The results do not, however, explain the higher rate of CHD in East Finland in comparison to the western part of the country.  相似文献   

15.
In a recent communication, we showed that human very low density lipoprotein (VLDL) apolipoprotein E (Apo E) from different individuals appears upon two-dimensional gel electrophoretic analysis in either one of two complex patterns. These have been designated class alpha and class beta. Mixing of VLDL from different subjects revealed that not all alpha or beta apo E patterns were the same. In this manner, we identified three subclasses of class alpha (alpha II, alpha III, and alpha IV) and three subclasses of class beta (beta II, beta III, and beta IV). We report here the results of family studies that reveal that the subclasses (alpha II, alph III, and alpha IV and beta II, beta III, and beta IV) of apo E are determined at a single genetic locus with three common alleles, epsilon II, epsilon III, and epsilon IV. The class beta phenotypes (beta II, beta III, and beta IV) represent homozygosity for two identical apo E alleles (epsilon). In contrast, class alpha phenotypes (alpha II, alpha III, and alpha IV) represent heterozygosity for two different apo E alleles. The apo E subclasses and their corresponding genotypes are as follows: beta II = epsilon II/epsilon II; beta III = epsilon III; beta IV = epsilon IV/epsilon IV; alpha II = epsilon II/epsilon III; alpha III = epsilon III/epsilon IV; and alpha IV = epsilon II/epsilon IV. To estimate the frequencies of the apo E alleles in the general population, apo E subclasses were then investigated in 61 unrelated volunteers and the results were: beta II = 1 (2%), beta III = 30 (49%), alpha II = 9 (15%, alpha III = 13 (31%), and alpha IV = 2 (3%). Utilizing the frequencies of these phenotypes, the gene frequencies were calculated to be epsilon II = 11%, epsilon III = 72%, and epsilon IV = 17%. In addition, apo E subclasses were studied in a clinic for individuals with plasma lipid disorders and the apo E subclass beta IV was found to be associated with type III hyperlipoproteinemia. There was no association of any apo E subclass with type II, type IV, or type VI hyperlipoproteinemia or plasma HDL cholesterol levels. This study explains the genetic basis for the common variation in a human plasma protein, apo E. Since the apo E subclass beta IV is associated with type III hyperlipoproteinemia, a disease characterized by xanthomatosis and premature atherosclerosis, understanding the genetic basis of the apo E subclasses should provide insight into the genetics of type III hyperlipoproteinemia.  相似文献   

16.
Summary By isoelectric focusing of delipidated sera followed by immunoblotting we studied the apolipoprotein (apo) E polymorphism in 2018 randomly selected 35-years-old males from three different areas in the Netherlands. Comparison of the APOE allele (E*2, E*3, and E*4) frequencies estimated in this study with those reported for several other population samples showed that there are marked differences between the Dutch population and the populations of Japan, New Zealand, Finland, and the United States. These differences in APOE allele frequencies appeared to be mainly due to differences in frequencies of the E*2 allele (decreased in Japan and Finland; increased in New Zealand) and the E*4 allele (increased in Finland; decreased in Japan and the United States). No difference in APOE allele frequencies was found between the Dutch population and the populations of West Germany and Scotland. Measurements of plasma cholesterol and apo B and E concentrations showed that the E*4 allele is associated with elevated plasma cholesterol and apo B levels and with decreased apo E concentrations, whereas the opposite is true for the E*2 allele. In the Dutch population, the sum of average allelic effects of the common APOE alleles on plasma cholesterol and apo B levels is 6.8% and 14.2%, respectively, of the total population mean. The total average allelic effect on plasma apo E concentrations was more pronounced (50.1%), suggesting that the APOE alleles primarily affect apo E concentrations rather than plasma cholesterol and apo B levels. This hypothesis is sustained by the observation that for plasma apo E levels the genetic variance associated with the APOE gene locus contributed about 18% to the total phenotypic variance. For plasma cholesterol and apo B this contribution was only 1.4% and 2.3% and is relatively low as compared with that reported for other population samples.  相似文献   

17.
From the cohort taking part in the Atherosclerosis Risk in Communities (ARIC) study, a multicenter investigation of atherosclerosis and its sequelae in women and men ages 45-64 years, a sample of 145 subjects with significant carotid artery atherosclerosis but without clinically recognized coronary heart disease was identified along with 224 group-matched control subjects. The aim of this paper is to measure the association of the apolipoprotein (apo) E polymorphism with the prevalence of significant carotid artery atherosclerotic disease (CAAD) after considering the contribution of established risk factor variables. The first model used a stepwise selection procedure to define a group of significant physical and lifestyle characteristics and a group of significant plasma lipid, lipoprotein, and apolipoprotein variables that were predictive of CAAD status in this sample. Those variables selected included age (years), body mass index (BMI; kg/m2), consumption of cigarettes (CigYears; number of cigarettes/d x the number of smoking years), hypertension status, high-density lipoprotein (HDL)-cholesterol (mg/dl), total cholesterol (mg/dl), and Lp[a] (micrograms/ml). The second model was built by forcing into the equation an a priori set of demographic, anthropometric, and lipoprotein variables, which were age, BMI, CigYears, hypertensive status, LDL-cholesterol, and HDL-cholesterol. In both models, the apo E genotype epsilon 2/3 was related to CAAD status. For both models, the estimated odds ratio of being a CAAD case associated with the apo E genotype epsilon 2/3 was > 2:1. The mechanism of the observed association between the epsilon 2/3 genotype and carotid atherosclerosis is unknown, but it is likely due to the known effects of the E2 isoform in causing delayed clearance of triglyceride-rich lipoproteins.  相似文献   

18.
Effect of coconut oil on plasma apo A-I levels in WHHL and NZW rabbits   总被引:1,自引:0,他引:1  
Age-matched Watanabe (WHHL) and New Zealand White (NZW) rabbits were fed a coconut oil-enriched diet (14%, w/w) for 2 weeks. Lipid and apolipoprotein (apo) A-I levels in plasma and lipoprotein fractions were monitored. Within 3 days after the start of the coconut oil diet, plasma apo A-I and high-density lipoprotein (HDL)-apo A-I levels increased 3-fold in the WHHL rabbits. A smaller but significant increase (63%) in apo A-I and HDL-apo A-I levels was also observed in the NZW rabbits. HDL cholesterol levels also increased from 16 +/- 3 mg/dl during a regular diet to 46 +/- 16 mg/dl (288%) during the coconut oil diet in the WHHL rabbits and from 37 +/- 7 mg/dl to 69 +/- 19 mg/dl (186%), respectively, in the NZW rabbits. Apo A-I and HDL cholesterol levels fell sharply to the original levels soon after switching back to a regular diet (within 3 days for WHHL rabbits and within 5 days for NZW rabbits). The fractional catabolic rate calculated from 125I-HDL kinetic studies indicated that the turnover rate for HDL was significantly slower in WHHL rabbits fed the coconut oil diet than the control diet (0.018 +/- 0.004 h-1 vs. 0.027 +/- 0.007 h-1, P less than 0.01). No changes were found in the NZW rabbits fed either diet. Trilaurin, the main component of the coconut oil (46.9%) supplemented diet (6.5%, w/w), was also used in this study. The effect of trilaurin on plasma apo A-I and HDL-cholesterol levels is discussed.  相似文献   

19.
In this study, we present clinical feature of a novel case with homozygous apolipoprotein (apo) E5.The patient was a 53-year-old Japanese woman. She was from a small island off the coast of Kagoshima Prefecture, Japan. Her parents were first degree cousins. No corneal opacification, xanthomatosis, lymphadenopathy, or hepatosplenomegaly was observed. There have been no signs of clinically overt atherosclerosis to date. Her serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL)-cholesterol levels were 11.6, 6.1 and 1.2 mmol/l, respectively, and apo A-I, A-II, B, C-II, C-III and E levels were 121, 34.8, 269, 10.4, 25.7 and 10.3 mg/dl, respectively. Serum lipoprotein profile analyzed by agarose gel electrophoresis and differential staining revealed markedly increased cholesterol and TG in both beta and prebeta-migrated lipoproteins, whereas alpha-migrated lipoprotein showed decreased cholesterol. Her apo E isoform analyzed by isoelectric focusing (IEF) was found to be homozygous apo E5.Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis of her apo E and lipoprotein lipase (LPL) genes revealed that she had a homozygous apo E (Glu3-->Lys) and heterozygous LPL variant Ser447 to Ter. Her son and daughter, both of whom had hyperlipidemia, were found to have apo E3/5 phenotype. Direct sequencing analysis of her apo E gene confirmed a homozygous one nucleotide change: G to A at nucleotide position of 2836 in the exon 3, resulting in Glu3-->Lys mutation.This is the first report of lipids and lipoprotein profiles in patients with homozygous apo E5 (Glu3-->Lys).  相似文献   

20.
We have developed a sensitve, high-resolution method for the analysis of the apolipoprotein(a) [apo(a)] isoforms using sodium dodecyl sulfate (SDS)-agarose/ gradient polyacrylamide gel electrophoresis. In an analysis of the genetic polymorphism of apo(a) isoforms and their relationship with plasma lipoprotein(a) [Lp(a)] levels in Japanese and Chinese, this method identified 25 different apo(a) isoforms and detected one or two apo(a) isoforms in more than 99.5% of the individuals tested. The apparent molecular weights of the apo(a) isoforms ranged from 370 kDa to 950 kDa, and 22 of the 25 different apo(a) isoforns had a higher molecular weight than of apo B-100. Studies on Japanese families confirmed the autosomal codominant segregation of apo(a) isoforms and the existence of a null allele at the apo(a) locus. The observed frequency distribution of apo(a) isoform phenotypes fit the expectations of the Hardy-Weinberg equilibrium in both the Japanese and Chinese populations. Our data indicate the existence of at least 26 alleles, including a null allele, at the apo(a) locus. The frequency distribution patterns of the apo(a) isoform alleles in Japanese and Chinese were similar to each other and also similar to that of apo(a) gene sizes reported in Caucasian American individuals. The average heterozygosity at the apo(a) locus was 92% in Japanese and 93% in Chinese. A highly significant inverse correlation was observed between plasma Lp(a) levels and the size of apo(a) isoforms in both the Japanese (r=-0.677, P=0.0001) and the Chinese (r=-0.703, P=0.0001). A highly skewed distribution of Lp(a) concentrations towards lower levels in the Japanese population may be explained by high frequencies of alleles encoding large apo(a) isoforms and the null allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号