首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with minimal hepatic encephalopathy (MHE) show increased oxidative stress in blood. We aimed to assess whether MHE patients show alterations in different types of blood cells in (a) basal reactive oxygen and nitrogen species levels; (b) capacity to metabolise these species. To assess the mechanisms involved in the altered capacity to metabolise these species we also analysed: (c) peroxynitrite formation and d) peroxynitrite reaction with biological molecules. Levels of reactive oxygen and nitrogen species were measured by flow cytometry in blood cell populations from cirrhotic patients with and without MHE and controls, under basal conditions and after adding generators of superoxide (plumbagin) or nitric oxide (NOR-1) to assess the capacity to eliminate them. Under basal conditions, MHE patients show reduced superoxide and peroxynitrite levels and increased nitric oxide (NO) and nitrotyrosine levels. In patients without MHE plumbagin strongly increases cellular superoxide, moderately peroxynitrite and reduces NO levels. In MHE patients, plumbagin increases slightly superoxide and strongly peroxynitrite levels and affects slightly NO levels. NOR-1 increases NO levels much less in patients with than without MHE. These data show that the mechanisms and the capacity to eliminate cellular superoxide, NO and peroxynitrite are enhanced in MHE patients. Superoxide elimination is enhanced through reaction with NO to form peroxynitrite which, in turn, is eliminated by enhanced reaction with biological molecules, which could contribute to cognitive impairment in MHE. The data show that basal free radical levels do not reflect the oxidative stress status in MHE.  相似文献   

2.
Selected biological effects of 1,4-naphthoquinone, menadione (2-methyl-1,4-naphthoquinone) and structurally related quinones from natural sources - the 5-hydroxy-naphthoquinones juglone, plumbagin and the 2-hydroxy-naphthoquinones lawsone and lapachol - were studied in human keratinocytes (HaCaT). 1,4-naphthoquinone and menadione as well as juglone and plumbagin were highly cytotoxic, strongly induced reactive oxygen species (ROS) formation and depleted cellular glutathione. Moreover, they induced oxidative DNA base damage and accumulation of DNA strand breaks, as demonstrated in an alkaline DNA unwinding assay. Neither lawsone nor lapachol (up to 100 μM) were active in any of these assays. Cytotoxic and oxidative action was paralleled by stimulation of stress signaling: all tested quinones except lawsone and lapachol strongly induced phosphorylation of the epidermal growth factor receptor (EGFR) and the related ErbB2 receptor tyrosine kinase. EGFR activation by plumbagin, juglone and menadione was attenuated by a superoxide dismutase mimetic, indicating that ROS-related mechanisms contribute to EGFR activation by these naphthoquinones.  相似文献   

3.
Oxidative stress in septic shock and disseminated intravascular coagulation   总被引:6,自引:0,他引:6  
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidant stress plays a major role in several aspects of septic shock and disseminated intravascular coagulation (DIC), and it is the subject of this review. Immunohistochemical and biochemical evidence demonstrate the significant role of reactive oxygen species (ROS) in endotoxic and hemorrhagic shock, and in endothelial injury associated with DIC syndrome. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of ROS. In addition, reactive oxygen species are potent triggers of DNA strand breakage, with subsequent activation of the nuclear enzyme poly-ADP ribosyl synthetase, with eventual severe energy depletion of the cells. Pharmacological evidence suggests that the peroxynitrite-poly-ADP ribosyl synthetase pathway contributes to the cellular injury in shock and endothelial injury. Treatment with superoxide dismutase mimetics (SODms), which selectively mimic the catalytic activity of the human superoxide dismutase enzymes, have been shown to prevent in vivo shock and the cellular energetic failure associated with shock.  相似文献   

4.
5.
Cyanide-resistant non-phosphorylating respiration is known in mitochondria from plants, fungi, and microorganisms but is absent in mammals. It results from the activity of an alternative oxidase (AOX) that conveys electrons directly from the respiratory chain (RC) ubiquinol pool to oxygen. AOX thus provides a bypath that releases constraints on the cytochrome pathway and prevents the over-reduction of the ubiquinone pool, a major source of superoxide. RC dysfunctions and deleterious superoxide overproduction are recurrent themes in human pathologies, ranging from neurodegenerative diseases to cancer, and may be instrumental in ageing. Thus, preventing RC blockade and excess superoxide production by means of AOX should be of considerable interest. However, because of its energy-dissipating properties, AOX might produce deleterious effects of its own in mammals. Here we show that AOX can be safely expressed in the mouse (MitAOX), with major physiological parameters being unaffected. It neither disrupted the activity of other RC components nor decreased oxidative phosphorylation in isolated mitochondria. It conferred cyanide-resistance to mitochondrial substrate oxidation and decreased reactive oxygen species (ROS) production upon RC blockade. Accordingly, AOX expression was able to support cyanide-resistant respiration by intact organs and to afford prolonged protection against a lethal concentration of gaseous cyanide in whole animals. Taken together, these results indicate that AOX expression in the mouse is innocuous and permits to overcome a RC blockade, while reducing associated oxidative insult. Therefore, the MitAOX mice represent a valuable tool in order to investigate the ability of AOX to counteract the panoply of mitochondrial-inherited diseases originating from oxidative phosphorylation defects.  相似文献   

6.
D-Glyceraldehyde (D-GLYC) is usually considered to be a stimulator of insulin secretion but theoretically can also form reactive oxygen species (ROS), which can inhibit beta cell function. We examined the time- and concentration-dependent effects of D-GLYC on insulin secretion, insulin content, and formation of ROS. We observed that a 2-h exposure to 0.05-2 mM D-GLYC potentiated glucose-stimulated insulin secretion (GSIS) in isolated Wistar rat islets but that higher concentrations inhibited GSIS. A 24-h exposure to 2 mm D-GLYC inhibited GSIS, decreased insulin content, and increased intracellular peroxide levels (2.14 +/- 0.31-fold increase, n = 4, p < 0.05). N-Acetylcysteine (10 mM) prevented the increase in intracellular peroxides and the adverse effects of d-GLYC on GSIS. In the presence of 11.1 but not 3.0 mm glucose, koningic acid (10 microM), a specific glyceraldehyde-3-phosphate dehydrogenase inhibitor, increased intracellular peroxide levels (1.88 +/- 0.30-fold increase, n = 9, p < 0.01) and inhibited GSIS (control GSIS = p < 0.001; koningic acid GSIS, not significant). To determine whether oxidative phosphorylation was the source of ROS formation, we cultured rat islets with mitochondrial inhibitors. Neither rotenone or myxothiazol prevented D-GLYC-induced increases in islet ROS. Adenoviral overexpression of manganese superoxide dismutase also failed to prevent the effect of D-GLYC to increase ROS levels. These observations indicate that exposure to excess D-GLYC increases reactive oxygen species in the islet via non-mitochondrial pathways and suggest the hypothesis that the oxidative stress associated with elevated D-GLYC levels could be a mechanism for glucose toxicity in beta cells exposed chronically to high glucose concentrations.  相似文献   

7.
Superoxide and its products, especially hydroxyl radical, were recently proposed to be instrumental in cell death following treatment with a wide range of antimicrobials. Surprisingly, bleomycin lethality to Escherichia coli was ameliorated by a genetic deficiency of superoxide dismutase or by furnishing the superoxide generator plumbagin. Rescue by plumbagin was similar in strains containing or lacking recA or with inactive, inducible, or constitutive soxRS regulons. Thus, superoxide interferes with bleomycin cytotoxicity in ways not readily explained by genetic pathways expected to protect from oxidative damage.  相似文献   

8.
Actively growing Escherichia coli cells exposed to plumbagin, a redox cycling quinone that increases the flux of O2- radicals in the cell, were mutagenized or killed by this treatment. The toxicity of plumbagin was not found to be mediated by membrane damage. Cells pretreated with plumbagin could partially reactivate lambda phage damaged by exposure to riboflavin plus light, a treatment that produces active oxygen species. The result suggested the induction of a DNA repair response. Lambda phage damaged by H2O2 treatment were not reactivated in plumbagin-pretreated cells, nor did H2O2-pretreated cells reactivate lambda damaged by treatment with riboflavin plus light. Plumbagin treatment did not induce lambda phage in a lysogen, nor did it cause an increase in beta-galactosidase production in a dinD::Mu d(lac Ap) promoter fusion strain. Cells pretreated with nonlethal doses of plumbagin showed enhanced survival upon exposure to high concentrations of plumbagin, but were unchanged in their susceptibility to far-UV irradiation. polA and recA mutants were not significantly more sensitive than wild type to killing by plumbagin. However, xth-1 mutants were partially resistant to plumbagin toxicity. It is proposed that E. coli has an inducible DNA repair response specific for the type of oxidative damage generated during incubation with plumbagin. Furthermore, this response appears to be qualitatively distinct from the SOS response and the repair response induced by H2O2.  相似文献   

9.
According to the oxidative damage theory a primary cause of aging is the accrual of molecular damage from reactive oxygen species (ROS), particularly superoxide and its derivatives. This predicts that treatments that reduce ROS levels should retard aging. Using the nematode Caenorhabditis elegans, we tested the effects on stress resistance and life span of treatment with EUK-8 and EUK-134, synthetic mimetics of the antioxidant enzyme superoxide dismutase (SOD), which neutralises superoxide. Treatment with SOD mimetics elevated in vivo SOD activity levels, particularly in mitochondria, where up to 5-fold increases in SOD activity were recorded. Treatment with exogenous SOD mimetics did not affect endogenous protein SOD levels. Where life span was reduced by the superoxide generators paraquat and plumbagin, EUK-8 treatment increased life span in a dose-dependent fashion. Yet in the absence of a superoxide generator, treatment with EUK-8 or EUK-134 did not increase life span, even at doses that were optimal for protection against pro-oxidants. Thus, an elevation of SOD activity levels sufficient to increase life span when it is limited by superoxide generators does not retard aging in the absence of superoxide generators. This suggests that C. elegans life span is not normally limited by levels of superoxide and its derivatives.  相似文献   

10.
A small portion of the oxygen consumed by aerobic cells is converted to superoxide anion at the level of the mitochondrial respiratory chain. If produced in excess, this harmful radical is considered to impair cellular structures and functions. Damage at the level of mitochondria have been reported after ischemia and reperfusion of organs. However, the complexity of the in vivo system prevents from understanding and describing precise mechanisms and locations of mitochondrial impairment. An in vitro model of isolated-mitochondria anoxia-reoxygenation is used to investigate superoxide anion generation together with specific damage at the level of mitochondrial oxidative phosphorylation. Superoxide anion is detected by electron paramagnetic resonance spin trapping with POBN-ethanol. Mitochondrial respiratory parameters are calculated from oxygen consumption traces recorded with a Clark electrode. Respiring mitochondria produce superoxide anion in unstressed conditions, however, the production is raised during postanoxic reoxygenation. Several respiratory parameters are impaired after reoxygenation, as shown by decreases of phosphorylating and uncoupled respiration rates and of ADP/O ratio and by increase of resting respiration. Partial protection of mitochondrial function by POBN suggests that functional damage is related and secondary to superoxide anion production by the mitochondria in vitro.  相似文献   

11.
Role of oxidative stress in Drosophila aging.   总被引:2,自引:0,他引:2  
We review the role that oxidative damage plays in regulating the lifespan of the fruit fly, Drosophila melanogaster. Results from our laboratory show that the lifespan of Drosophila is inversely correlated to its metabolic rate. The consumption of oxygen by adult insects is related to the rate of damage induced by oxygen radicals, which are purported to be generated as by-products of respiration. Moreover, products of activated oxygen species such as hydrogen peroxide and lipofuscin are higher in animals kept under conditions of increased metabolic rate. In order to understand the in vivo relationship between oxidative damage and the production of the superoxide radical, we generated transgenic strains of Drosophila melanogaster that synthesize excess levels of enzymatically active superoxide dismutase. This was accomplished by P-element transformation of Drosophila melanogaster with the bovine cDNA for CuZn superoxide dismutase, an enzyme that catalyzes the dismutation of the superoxide radical to hydrogen peroxide and water. Adult flies that express the bovine SOD in addition to native Drosophila SOD are more resistant to oxidative stresses and have a slight but significant increase in their mean lifespan. Thus, resistance to oxidative stress and lifespan of Drosophila can be manipulated by molecular genetic intervention. In addition, we have examined the ability of adult flies to respond to various environmental stresses during senescence. Resistance to oxidative stress, such as that induced by heat shock, is drastically reduced in senescent flies. This loss of resistance is correlated with the increase in protein damage generated in old flies by thermal stress and by the insufficient protection from cellular defense systems which includes the heat shock proteins as well as the oxygen radical scavenging enzymes. Collectively, results from our laboratory demonstrate that oxidative damage plays a role in governing the lifespan of Drosophila during normal metabolism and under conditions of environmental stress.  相似文献   

12.
The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), which is considered as the pathogenic agent of many diseases and of aging. We have investigated the role of complex I in superoxide radical production and found by the combined use of specific inhibitors of complex I that the one-electron donor to oxygen in the complex is a redox center located prior to the sites where three different types of Coenzyme Q (CoQ) competitors bind, to be identified with an Fe-S cluster, most probably N2, or possibly an ubisemiquinone intermediate insensitive to all the above inhibitors. Short-chain Coenzyme Q analogs enhance superoxide formation, presumably by mediating electron transfer from N2 to oxygen. The clinically used CoQ analog, idebenone, is particularly effective, raising doubts on its safety as a drug. Cells counteract oxidative stress by antioxidants. CoQ is the only lipophilic antioxidant to be biosynthesized. Exogenous CoQ, however, protects cells from oxidative stress by conversion into its reduced antioxidant form by cellular reductases. The plasma membrane oxidoreductase and DT-diaphorase are two such systems, likewise, they are overexpressed under oxidative stress conditions.  相似文献   

13.
Malathion is a pesticide used on a large scale and with high potential risk for human exposure. However, it is reasonable to hypothesize that while the malathion is metabolizing reactive oxygen species (ROS) can be generated and subsequently there is onset of an oxidative stress in central nervous system (CNS) structures: hippocampus, cortex, striatum and cerebellum of intoxicated rats due to mitochondrial respiratory chain disfunctions. The present study was therefore undertaken to evaluate malathion-induced lipid peroxidation (LPO), superoxide production from sub-mitochondrial particles and the activity of complexes II and IV of the mitochondrial respiratory chain. Malathion was administered in doses of 25, 50, 100 and 150 mg malathion/kg. After malathion administration LPO increased in hippocampus and striatum. This was accompanied by an increase in the formation of superoxide in submitochondrial particles in the hippocampus. Complex IV suffered significant inhibition of its activity. We could demonstrate in this study that malathion induces oxidative stress and it could be due to inactivation of mitochondrial respiratory complexes.  相似文献   

14.
Iron and oxidative stress in bacteria   总被引:21,自引:0,他引:21  
The appearance of oxygen on earth led to two major problems: the production of potentially deleterious reactive oxygen species and a drastic decrease in iron availability. In addition, iron, in its reduced form, potentiates oxygen toxicity by converting, via the Fenton reaction, the less reactive hydrogen peroxide to the more reactive oxygen species, hydroxyl radical and ferryl iron. Conversely superoxide, by releasing iron from iron-containing molecules, favors the Fenton reaction. It has been assumed that the strict regulation of iron assimilation prevents an excess of free intracellular iron that could lead to oxidative stress. Studies in bacteria supporting that view are reviewed. While genetic studies correlate oxidative stress with increase of intracellular free iron, there are only few and sometimes contradictory studies on direct measurements of free intracellular metal. Despite this weakness, the strict regulation of iron metabolism, and its coupling with regulation of defenses against oxidative stress, as well as the role played by iron in regulatory protein in sensing redox change, appear as essential factors for life in the presence of oxygen.  相似文献   

15.
The involvement of reactive oxygen species (ROS) in cardiac ischemia-reperfusion injuries is well-established, but the deleterious effects of hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO*) or superoxide anion (O(2)*(-) ) on mitochondrial function are poorly understood. Here, we report that incubation of rat heart mitochondria with each of these three species resulted in a decline of the ADP-stimulated respiratory rate but not substrate-dependent respiration. These three species reduced oxygen consumption induced by an uncoupler without alteration of the respiratory chain complexes, but did not modify mitochondrial membrane permeability. HO* slightly decreased F1F0-ATPase activity and HO* and O(2)*(-) partially inhibited the activity of adenine nucleotide translocase; H(2)O(2) failed to alter these targets. They inhibited NADH production by acting specifically on aconitase for O(2)*(-) and alpha-ketoglutarate dehydrogenase for H(2)O(2) and HO*. Our results show that O(2)*(-), H(2)O(2) and HO* act on different mitochondrial targets to alter ATP synthesis, mostly through inhibition of NADH production.  相似文献   

16.
Long-term and high-dose glucocorticoids (GCs) supplementation has been linked to osteoporosis. In this study, we studied the protective role of plumbagin against GC-induced cell damage in MC3T3-E1 cells. The effect of dexamethasone (DEX) and plumbagin on cell viability was determined. DEX showed as IC-50 value of 95 μM. Further, 10 μM plumbagin treatment effectively ameliorated DEX-induced cell death by increasing the cell viability to 92 %. A further effect of plumbagin on DEX-induced oxidative stress was determined through reactive oxygen species (ROS) level, lipid peroxide content, and antioxidant status. Nrf-2 nuclear localization was analyzed through immunofluorescence. Protein expression of redox regulator Nrf-2 and their target genes HO-1 and NQO1 and osteogenic markers (OCN, OPN Runx-2) were determined by Western blot. Apoptotic effect was analyzed by mitochondrial membrane potential and caspase activities (3, 8, and 9). The results showed that DEX treatment showed a significant increase in oxidative stress through increased ROS levels and downregulation of cytoprotective antioxidant proteins and antioxidant enzyme activities. Further DEX treatment downregulated the osteogenic markers and upregulated apoptosis through decreased mitochondrial membrane potential and upregulation of caspase activities. Plumbagin treatment significantly reversed the levels of oxidative stress and apoptotic markers and protected against DEX-induced cell damage. Further, plumbagin treatment significantly improved the expression of osteogenic markers compared to DEX treatment. In conclusion, the present study shows that plumbagin offers significant protective role against DEX-induced cellular damage via regulating oxidative stress, apoptosis, and osteogenic markers.  相似文献   

17.
Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.  相似文献   

18.
Juglone and plumbagin are plant bioactive derivatives of 1,4-naphthoquinone occurring in plants, whereas lots of these plants belong to invasive species. Clarifying of action of juglone and plumbagin applied on plant cell model represented by tobacco BY-2 cells was the basic aim of this work. It was shown that naphthoquinones are able to induce various structural, functional and enzymatic changes leading to processes of apoptic-like cell death. Using dihydroethidium as fluorescent probe the mechanism of naphthoquinones action was explained. They are able to generate reactive oxygen species, which play important role in processes of programmed cell death. Disruption of mitochondrial respiratory chain was detected too. This study shown that mechanism of naphthoquinones action to plant cells is very complex and predestine them to be very effective compounds in plant competition fight.  相似文献   

19.
The mitochondrial succinate dehydrogenase (SDH) is an iron-sulfur flavoenzyme linking the Krebs cycle and the mitochondrial respiratory chain. Mutations in the human SDHB, SDHC and SDHD genes are responsible for the development of paraganglioma and pheochromocytoma, tumors of the head and neck or the adrenal medulla, respectively. In recent years, SDH has become recognized as a source of reactive oxygen species, which may contribute to tumorigenesis. We have developed a Caenorhabditis elegans model to investigate the molecular and catalytic effects of mutations in the sdhb-1 gene, which encodes the SDH iron-sulfur subunit. We created mutations in Pro211; this residue is located near the site of ubiquinone reduction and is conserved in human SDHB (Pro197), where it is associated with tumorigenesis. Mutant phenotypes ranged from relatively benign to lethal and were characterized by hypersensitivity to oxidative stress, a shortened life span, impaired respiration and overproduction of superoxide. Our data suggest that the SDH ubiquinone-binding site can become a source of superoxide and that the pathological consequences of SDH mutations can be mitigated with antioxidants, such as ascorbate and N-acetyl-l-cysteine. Our work leads to a better understanding of the relationship between genotype and phenotype in respiratory chain mutations and of the mechanisms of aging and tumorigenesis.  相似文献   

20.
A detailed analysis of literary data concerning the oxidative modification of proteins by active oxygen species was carried out. It was shown that intermediate products of molecular oxygen reduction, e.g., superoxide anion radical, hydrogen peroxide and hydroxyl radical, can induce the inactivation of enzymes in vitro as a result of oxidative modification of certain amino acid residues necessary for the maintenance of native properties of the enzyme. In some cases modification of enzymes results in their degradation by proteolytic enzymes. Besides, some enzymes catalyzing the interconversions of active oxygen species (catalase superoxide dismutase, cytochrome P-450) are also inactivated in the course of catalysis under the oxidative action of active oxygen species. It was assumed that the oxidative modification of proteins appears to be one of the mechanisms which control their degradation in the cell. The hydroxyl radical oxidizing the amino acid residues located in the vicinity of the site of its synthesis is a direct modifying species. The superoxide anion radical and hydrogen peroxide are hydroxyl radical precursors and are responsible for the transport of oxidizing equivalents in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号