首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In the present work we compared the appearance of carbohydrate binding sites for mannose, maltose, sialic acid and N-acetyl-glucosamine in the 11 to 13-day-old mouse embryo with the appearance of BSA and lectin binding sites. The carbohydrate-binding sites were localized with FITC-coupled neoglycoproteins, synthesized by chemical glycosylation of bovine serum albumin (BSA). These localizations were compared with binding of the FITC-labelled unglycosylated BSA. Furthermore the localizations of neoglycoprotein and BSA binding sites were correlated with binding of the FITC-labelled lectins WGA, RCA I and Con A. Initial appearance of neoglycoprotein binding sites occurred in the lens capsule of the 13 day old mouse embryo. Binding sites for the unglycosylated BSA appeared earlier, i.e. already in the 12-day-old embryo, in the basement membranes of the choroid plexus and the lung bud and lectin binding sites were seen in these structures in the 11-day-old embryo. The staining of the basement membrane and the lens capsule for BSA binding sites in the 12-and 13-day-old embryos correspond to WGA binding to these membranes. From these results we concluded that 1) specific carbohydrates which are probably involved in embryonic development appear much earlier in the embryo than the endogenous lectins which are able to react with these carbohydrates and 2) BSA is a protein which like WGA probably binds N-acetylglucosamine or sialic acid moieties.  相似文献   

2.
The appearance of sialoconjugates in developing rat kidney glomeruli was studied using lectins and neuraminidase-lectin staining sequences. In the early S-shaped bodies, binding of Maclura pomifera (MPA; specific for galactosaminyl residues of glycoconjugates) could be detected in the presumptive podocyte layer at the apex of these cells, but notably no binding of lectins specific for sialic acid could be seen. During further morphologic maturation of the S-shaped bodies, binding of Limax flavus (LFA; specific for sialic acids) and Triticum vulgaris (WGA; specific for sialic acids and N-acetyl glucosaminyl moieties) appeared at the apex of podocytes and extended subsequently along the lateral membranes to the base of these cells. In morphologically mature glomeruli, LFA stained not only the base of podocytes but also glomerular basement membranes. WGA and MPA bound to the capillary endothelia as well as to the structures bound by LFA. The intensity of WGA binding increased considerably after 5 days of postnatal life, seemingly in parallel with the decrease and ultimate disappearance of MPA binding. In addition to showing individual appearance pattern for various lectin binding sites, these studies give evidence of previously unrecognized postnatal completion of the components of glomerular filtration barrier.  相似文献   

3.
Summary In the present work we localized binding sites for the lectins WGA, RCA I, con A and SBA at the ultrastructural levels in morphologically different basement membranes. These different basement membranes included (a) thin ones, for example, tubular basement membrane of the mouse kidney which separates epithelial cell layers from mesenchymal cells and glomerular basement membrane which separates epithelial cells from other epithelial cells, (b) thick multilayered ones, for example, Reichert's membrane which is built up during the embryonic development of rodents and as an example of a pathologically thickened basement membrane, the basement membrane of the Engelbreth-Holm-Swarm (EHS) sarcoma. We were able to show that, in contrast to the thick multilayered basement membranes, the thin ones showed a strong positive SBA-binding pattern. Thick basement membranes otherwise revealed very strong labelling with the lectins WGA and RCA I. Our findings lead us to conclude that thin and thick basement membranes differ markedly in the quality and quantity of the carbohydrates which they contain.  相似文献   

4.
In the present investigation we localized binding sites for the lectins WGA (wheat germ agglutinin), RCA I (Ricinus communis agglutinin), LFA (Limax flavus agglutinin) and SBA (soya bean agglutinin) in the 7-day-old mouse embryo at the ultrastructural level. Lectin binding sites were localized on formaldehyde fixed embryos, embedded in LR-Gold, using gold-labelled lectins. Binding sites for WGA and RCA I were observed at the surface of the embryonic ectoderm oriented towards the proamnion cavity and the outer surface of the extraembryonic and the embryonic endoderm. Staining for SBA and LFA binding sites was seen in the basement membrane of the ectoderm. Moreover, binding sites for LFA were observed in the nucleoli of cells of the ectodermal, the mesodermal and the endodermal layer and in free ribosomes located in the cytoplasm of these cells.  相似文献   

5.
Kappa opioid binding sites from human placenta, prelabeled with 3H-etorphine and solubilized, were retained on wheat germ agglutinin (WGA) agarose and specifically eluted with N-acetylglucosamine. No significant retention was found with other immobilized lectins, including Concanavalin A (Con A), soybean seed lectin (SBA), Pisum sativum lectin (PsA), Lens culinaris Medik. lectin (LcA), and Lathyrus tingitanus lectin(LtA). About 23% of applied kappa sites were specifically eluted from WGA agarose, less than half of the proportion of rat brain opioid binding sites eluted from the same lectin (55%). Receptors from placental extracts were compared with those from other tissues enriched in either kappa or mu sites. The proportion of applied kappa sites from guinea pig cerebellum eluted specifically from WGA agarose was 36%, whereas elution of binding sites from rat thalamus and rabbit cerebellum (enriched in mu sites) was at a level of 55%. This difference in the level of retention on and elution from WGA may reflect differences in the sugar composition of the glycoproteins of the two types of receptors. Succinylation of WGA abolished its ability to retain opioid binding sites, consistent with involvement of sialic acid. However, currently available evidence suggests that differences in retention on WGA between kappa and mu sites may be due to differences in either sialic acid or N-acetylglucosamine content or both.  相似文献   

6.
Expression of cellular glycoconjugates during differentiation of human fetal kidney was studied using fluorochrome-labeled lectins. Each lectin revealed a characteristic binding pattern during the phenotypic change of the nephrogenic mesenchyme and during distinct stages of nephron development. The uninduced mesenchymal cells were positive for Pisum sativum (PSA), Concanavalin A (ConA), Wistaria floribunda (WGA), and Ricinus communis (RCA-I) lectins. However, these lectins failed to react with the uninduced cells of the S-shaped bodies, whereas Maclura pomifera (MPA), Triticum vulgaris (WGA) and, after neuraminidase treatment, Arachis hypogaea (PNA) agglutinins bound intensely to the presumptive podocytes. During later stages of nephrogenesis, MPA positively on the podocytes weakened and could not be observed in adult kidney glomeruli. Binding sites for Helix pomatia (HPA) agglutinin in glomeruli were also expressed only transiently during nephrogenesis. During further development PSA, ConA, WFA, and RCA-I reacted with mesangial cells in addition to the glomerular basement membranes. The segment-specific lectin binding patterns of the tubuli emerged in parallel with the appearance of brush border and Tamm-Horsfall antigens of the proximal and distal tubuli. The results show that nephron site-specific saccharides appear in a developmentally regulated manner and in parallel with morphologic maturation of the nephron. Lectins therefore appear to be useful tools for study of induction and maturation of various nephron cell types.  相似文献   

7.
Studies of membrane glycoconjugates of Taenia taeniaeformis were initiated by assays of the lectin binding characteristics of 35-day-old cysticerci. Parasites fixed in glutaraldehyde were incubated with one of the following FITC-labelled lectins: Concanavalin A (Con A), Lens culinaris agglutinin (LCA), Ricinus communis agglutinin (RCA), peanut agglutinin (PNA), fucose binding protein (FBP) and wheat germ agglutinin (WGA) and either their specific or a nonspecific sugar. Ultraviolet microscopy revealed that only Con A and LCA bound in large amounts to the surface of cysticerci. This binding was partly inhibited by the specific sugar, but the nonspecific sugar had little effect. The lectin not removed by either of the sugars may have been bound nonspecifically to the charged glycocalyx. Lectins were primarily bound on the anterior third of the parasite around the scolex invagination. Kinetic studies of lectin interactions were carried out with LCA and RCA by spectrophotofluorometric analysis of the amount bound specifically or nonspecifically over a range of lectin concentrations. Lens culinaris lectin binding was found to be specific and involve 2 receptors which showed large differences in their affinity for lectin and prevalence on the surface. Ricinus communis lectin did not bind specifically but nonspecific interactions were observed. Adherence of small numbers of host cells was shown to have no measurable effect on the lectin binding characteristics. The results suggest that the major surface carbohydrates exposed are D-mannose and/or D-glucose residues with the other sugar groups poorly represented. This relatively homogeneous surface may have implications for the antigenicity of the parasite in its host.  相似文献   

8.
Active opiate binding sites have been solubilized from mammalian brain cell membranes. The presence of 0.5-0.1 M NaCl during treatment of membranes from rat brain, human frontal cortex, and bovine corpus striatum with glycodeoxycholate or digitonin resulted in the extraction of active opiate binding sites in yields ranging up to 43%. The criteria for solubility of the sites were their inability to sediment at 10(5) x g after 2 hr and their apparent molecular weight of 3- 4 x 10(5) as determined by gel filtration. The receptors in solution resemble the membrane-bound sites with respect to saturability, stereo-specificity, sensitivity to heat and reagents, and high affinity for opioid ligands. The interaction of solubilized sites with immobilized lectins was used to demonstrate the glycoprotein nature of the opiate receptor. Soluble receptors from all species studied were retained by wheat germ agglutinin(WGA)-agarose and could be specifically eluted with N-acetylglucosamine. No retention of solubilized material was observed with eight other lectins examined, including horseshoe crab lectin, a sialic acid specific agglutinin. The receptor protein eluted from WGA columns was enriched 25-50-fold over the crude soluble fraction.  相似文献   

9.
10.
We investigated the binding of five HRP-conjugated lectins to rabbit tooth germs at the cap and late bell stages of development. The results revealed some changes in the glycosylation patterns of the glycoconjugates. Sugar residues, such as α-D-mannose, methyl-D-glucose, N-acetylglucosamine, β-D-galactosamine, D-galactose, and sialic acid, were detectable in some components of the tooth germs. The most conspicuous developmental change was increased binding of Con A and WGA. These lectins showed, at the cap stage, moderate binding to the (pre)-ameloblasts and (pre)-odontoblasts. With further development to the late bell stage, but prior to the achievement of well-defined morphological-functional characteristics, the odontoblasts and ameloblasts displayed considerable amounts of α-D-mannose, α-D-glucose as well as β-D-acetylglucosamine and sialic acid. Appropriate control studies confirmed the specificity of the binding of the lectins. Two lectins (DBA and PNA) with known specificity for N-acetylgalactosamine groups were bound by the basement membranes in tooth germs at the cap stage. A third lectin (RCA) with the same specificity did not produce any detectable staining in the same material. Further studies must be planned to determine the specific functions and significance of lectin-HRP-binding glycoconjugates in odontogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Biosignalling via lectins may involve modulation of protein kinase activities. This aspect of the biological action of mammalian and plant lectins has been investigated for their effect on the activity of the isolated epidermal growth factor receptor (EGFR). The constitutive tyrosine kinase activity of the epidermal growth factor receptor from rat liver, isolated by calmodulin-affinity chromatography, was activated by concanavalin A (ConA), and wheat germ agglutinin (WGA) to a similar extent as the measured enhancement induced by EGF. In contrast, two mannose-specific lectins, the mannan-binding protein (MBP) and serum amyloid P component (SAP), isolated from human serum, have inhibitory effects, both in the absence and presence of EGF. The differential effects of these lectins were tested using as phosphorylatable substrates a co-polymer of glutamic acid-tyrosine, as well as calmodulin. However, two galactoside-specific lectins, the laminin-binding -galactoside-binding 14 kDa lectin, isolated from bovine heart (14K-BHL), and the /-galactoside-binding lectin, isolated from mistletoe (Viscum album L.) leaves (VAA), do not inhibit the EGFR tyrosine kinase activity. The sugar dependence of the lectin-mediated action was studied by inhibition assays. Mannose and a mannose-containing neoglycoprotein prevent the activating effect of ConA, and N-acetyl-D-glucosamine partially prevents the activation produced by WGA. However, mannose and mannose-containing neoglycoprotein were ineffective to reduce the inhibitory effect of MBP or SAP. Although the response to binding of ConA and WGA was different to that of MBP or SAP with respect to the tyrosine kinase activity of the EGFR, it should be noted that the four lectins inhibited the binding of [125I]EGF to its receptor with similar efficiency.Abbreviations EGF epidermal growth factor - EGFR epidermal growth factor receptor - ConA concanavalin A - MBP mannan-binding protein - SAP serum amyloid P component - WGA wheat germ agglutinin - 14K-BHL bovine heart 14 kDa lectin - VAA Viscum album L. (mistletoe) agglutinin - EGTA [ethylenebis(oxyethylenenitrilo)]-tetraacetic acid; poly(Glu:Tyr)-co-polymer of L-glutamic acid and L-tyrosine - Hepes 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - Tris tris(hydroxymethyl)-aminomethane - DSS suberic acid bis(N-hydroxy-succinimide ester) - PMSF phenylmethanesulfonyl fluoride - Man mannose - Gal galactose - BSA bovine serum albumin - Man-BSA neoglycoprotein containing -D-mannose - Lac-BSA neoglycoprotein containing -lactose - Gal-BSA neoglycoprotein containing galactose  相似文献   

12.
Helicobacter pylori attaches via lectins, carbohydrate binding proteins, to the carbohydrate residues of gastric mucins. Guinea-pigs are a suitable model for a H. pylori infection and thus the carbohydrate composition of normal and H. pylori infected gastric mucosa was investigated by lectin histochemistry. The stomach of all infected animals showed signs of an active chronic gastritis in their mucosa, whereas no inflammation was present in the control animals. The corpus–fundus regions of the controls showed heterogeneous WGA, SNA-I, UEA-I and HPA binding in almost all parts of the gastric glands. While these lectins labelled the superficial mucous cells and chief cells heterogeneously, the staining of the parietal cells was limited to WGA and PHA-L. Mucous neck cells reacted heterogeneously with UEA-I, HPA, WGA and PHA-L. In the antrum, the superficial mucous cells and glands were stained by WGA, UEA-I, HPA, SNA-I or PHA-L. WGA, UEA-I, SNA-I and HPA labelled the surface lining cells strongly. The mucoid glands reacted heterogeneously with WGA, UEA-I, HPA, SNA-I and PHA-L. In both regions, the H. pylori infected animals showed similar lectin binding pattern as the controls. No significant differences in the lectin binding pattern and thus in the carbohydrate composition between normal and H. pylori infected mucosa could be detected, hence H. pylori does not induce any changes in the glycosylation of the mucosa of the guinea-pig. This unaltered glycosylation is of particular relevance for the sialic acid binding lectin SNA-I as H. pylori uses sialic acid binding adhesin for its attachment to the mucosa. As sialic acid binding sites are already expressed in the normal mucosa H. pylori can immediately attach via its sialic acid binding adhesin to the mucosa making the guinea-pig particularly useful as a model organism.This work is dedicated to Professor B. Tillmann on the occasion of his 65th birthday  相似文献   

13.
Summary Five Fluorescein-isothiocyanate (FITC)-labelled lectins were used to study the postnatal development of carbohydrate constituents in the rat ventral prostate: Concanavalin A (Con A), wheat germ agglutinin (WGA), peanut agglutinin (PNA),Dolichos biflorus agglutinin (DBA) andRicinus communis agglutinin I (RCA-I) With all the lectins, tested, except RCA-I, specific binding sites could be shown for every stage of differentiation in the glandular epithelium. Binding sites for Con A, WGA, PNA and DBA were found from day 10 to 13 post partum onwards. Each lectin showed a characteristic localization. Binding sites for the lectins used changed to different extents during the following two weeks. After the 24th day post partum no further changes in the lectin binding pattern could be found. The development of the lectin binding properties showed that the changes in carbohydrate-containing constituents of the prostate correlate with the beginning of prostatic secretion and to prostatic epithelial differentiation. In the periacinar stroma the development of the lectin binding pattern was similar to that in the glandular epithelium. The changes of stromal binding sites for Con A and WGA during epithelial differentiation may reflect the changes of epithelial-stromal interactions in the prostate.  相似文献   

14.
The anlage of duodenum, ileum and colon were removed from chick embryos of day 8-21 of incubation and from 1-day-old chicks. A battery of seven different horseradish peroxidase-conjugated lectins (PNA, SBA, DBA, Con A, WGA, LTA and UEAI) was used to study the carbohydrate residues of the glycoconjugates in the goblet cells of the three parts of the intestine. The main results can be summarized as follows: differences in lectin binding were absent in the proximal and distal parts of the duodenum, ileum and colon. Lectin histochemistry showed differences among the three intestinal segments for the time of appearance of the oligosaccharides in the goblet mucus. In the colonic goblet cells of 1-day-old chicks, LTA and UEAI lectins showed two different types of linkage of alpha-L-fucose. This is the first demonstration of UEAI reactive sites in Gallus domesticus.  相似文献   

15.
Sialoconjugates and development of the tail bud   总被引:1,自引:0,他引:1  
Using lectin histochemistry, we have previously shown that there are alterations in the distribution of glycoconjugates in the tail bud of chick embryos that parallel the developmental sequence of the caudal axis. If glycoconjugates or the cells bearing them play a role in caudal axial development, then, restriction of their availability by binding with lectins would be expected to produce abnormalities of caudal development. In the present study, we treated embryos at various stages of tail bud development by microinjection with a variety of lectins. Administration of WGA by sub-blastodermal injection resulted in high incidences of secondary neural tube and notochordal abnormalities in lectin-treated embryos. The incidence of malformations was dependent upon both the dose of WGA received and the stage of development at the time of treatment. Using an anti-WGA antibody, we have also shown binding of the lectin in regions where defects were found. The lectin WGA binds to the sialic acid residues of glycoconjugates and to N-acetylglucosamine. Treatment of embryos with Limulus polyphemus lectin (LPL), which also binds to sialic acid, produced results similar to those of WGA. Treatments using lectins with other sugar-binding specificities, including succinylated WGA (with N-acetylglucosamine specificity only) produced defects that differed from those produced by WGA and LPL, and only with the administration of much higher doses. The results suggest that glycoconjugates in general and sialoconjugates in particular, or the cells carrying them, may have a role in caudal axial development.  相似文献   

16.
Normal bovine erythrocytes were agglutinated with four of five lectins specific for different oligosaccharides. The order of reactivity was wheat germ greater than ricin greater than soybean greater than peanut. Concanavalin A did not agglutinate normal bovine erythrocytes. After neuraminidase treatment of normal bovine erythrocytes, each lectin agglutinated the cells with decreased concentrations of lectin, verifying that partial removal of sialic acid exposes more of each lectin's binding sites or alters the binding site such that fewer molecules of lectin are required to initiate agglutination. A change in agglutination of erythrocytes using soybean agglutinin and peanut agglutinin occurred when cells were obtained from cattle infected with Eperythrozoon wenyoni. The results suggested that an alteration in erythrocyte membranes occurred as a result of this infection as manifested by the increased recognition of both the soybean agglutinin and peanut agglutinin receptor carbohydrates. A similar effect was indicated with erythrocytes obtained during an acute Anaplasma marginale infection; however, an ensuing reticulocytosis masked the effect, requiring the use of fluoresceinated lectins to verify that increased binding of each lectin occurred with infected cells when compared to normal cells.  相似文献   

17.
Protein-carbohydrate recognition may be involved in an array of molecular interactions on the cellular and subcellular levels. To gain insight into the role of proteins in this type of interaction, surgically removed specimens of human endomyocardial tissue were processed for histochemical and biochemical analysis. The inherent capacity of these sections to bind individual sugar moieties, which are constituents of the carbohydrate part of cellular glycoconjugates, was assessed using a panel of biotinylated neoglycoproteins according to a standardized procedure. Together with appropriate controls, it primarily allowed localization of endogenous lectins. Differences in lectin expression were observed between layers of endocardial tissue, myocardial cell constituents, connective-tissue elements, and vascular structures. The endocardium proved to be positive with beta-galactoside-bearing probes; with neoglycoproteins carrying beta-xylosides, alpha-fucosides, and galactose-6-phosphate moieties; and with probes containing a carboxyl group within the carbohydrate structure, namely sialic acid and glucuronic acid. In contrast, only fucose-and maltose-specific receptors were apparent in the elastic layers of the endocardium. Aside from ascertaining the specificity of the protein-carbohydrate interaction by controls, i.e., lack of binding of the probe in the presence of the unlabelled neoglycoprotein and lack of binding of the labelled sugar-free carrier protein, respective sugar receptors were isolated from heart extracts by using histochemically effective carbohydrates as immobilized affinity ligand. Moreover, affinity chromatography using immobilized lactose as affinity ligand as well as the use of polyclonal antibodies against the predominant beta-galactoside-specific lectin of heart demonstrated that the lactose-specific neoglycoprotein binding was due to this lectin. Remarkably, the labelled endogenous lectin, preferred to plant lectins for detecting ligands of the endogenous lectin, localized ligands in tissue parts where the lectin itself was detected glycohistochemically as well as immunohistologically. This demonstration of receptor-ligand presence in the same system is a further step toward functional assignment of the recorded protein-carbohydrate interaction. Overall, the observed patterns of lectin expression may serve as a guideline to elucidate the precise physiological relevance of lectins and to analyze pathological conditions comparatively.  相似文献   

18.
Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): L-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis- to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

19.
Summary Sections from the nasal cavity of 12-day-old Swiss albino mice (NMRI strain) were subjected to lectin histochemistry. A panel of biotinylated lectins (Con A, WGA, s-WGA, PNA, SBA, DBA and UEA I) and a horseradish peroxidase-conjugated lectin (GSA II) showed marked differences in binding to the respiratory and the neuroepithelial cells. SBA (affinity for galactose andN-acetylgalactosamine), PNA (galactose) and WGA (sialic acids andN-acetylglucosamine) labelled the receptor neurons in the olfactory and vomeronasal epithelium. DBA (N-acetylgalactosamine) labelled a subgroup of about 5% of the olfactory receptor neurons, but most neurons in the vomeronasal organ. UEA I (fucose) and s-WGA (N-acetylglucosamine) intensely labelled the entire nerve cell population in the vomeronasal organ, but in the olfactory epithelium the labelling with these lectins was stratified. In the respiratory epithelium the ciliated cells were labelled with WGA and s-WGA, while the secretory cells bound most of the lectins. Thus different sugars are exposed on the surface of the different types of epithelia in the nasal cavity, providing a basis for selectivity in microbial attacks on these areas.  相似文献   

20.
The effects of the lectins concanavalin A, WGA, ricin, abrin, and the mistletoe lectins from Viscum album MLI, MLII, and MLIII on the binding of ligands of the NMDA and sigma receptors in rat hippocampus synaptic plasma membranes were investigated. Binding of [3H]MK-801, [3H]glutamate, [3H]5,7-DCKA, and [3H]glycine to the membranes was decreased by 40-60% after addition of galactose-specific lectins (mistletoe lectins MLI, MLII, ricin, abrin) at concentrations of 0.01 mg/ml, but was not affected by the glucose- and mannose-specific lectin Con A, an acetylglucosamine-specific lectin WGA, or an acetylgalactosamine-specific lectin MLIII. The binding of [3H]SKF 10047 was decreased only in the presence of MLIII and did not change after addition of the other lectins. It is suggested that lectin-sensitive ligand binding sites of sigma- and NMDA receptors are located separately, and that the carbohydrate side chains of the sigma receptor do not participate in the modulation of the NMDA-receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号