首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expansion of woody vegetation in grasslands is a worldwide phenomenon with implications for C and N cycling at local, regional and global scales. Although woody encroachment is often accompanied by increased annual net primary production (ANPP) and increased inputs of litter, mesic ecosystems may become sources for C after woody encroachment because stimulation of soil CO2 efflux releases stored soil carbon. Our objective was to determine if young, sandy soils on a barrier island became a sink for C after encroachment of the nitrogen‐fixing shrub Morella cerifera, or if associated stimulation of soil CO2 efflux mitigated increased litterfall. We monitored variations in litterfall in shrub thickets across a chronosequence of shrub expansion and compared those data to previous measurements of ANPP in adjacent grasslands. In the final year, we quantified standing litter C and N pools in shrub thickets and soil organic matter (SOM), soil organic carbon (SOC), soil total nitrogen (TN) and soil CO2 efflux in shrub thickets and adjacent grasslands. Heavy litterfall resulted in a dense litter layer storing an average of 809 g C m?2 and 36 g N m?2. Although soil CO2 efflux was stimulated by shrub encroachment in younger soils, soil CO2 efflux did not vary between shrub thickets and grasslands in the oldest soils and increases in CO2 efflux in shrub thickets did not offset contributions of increased litterfall to SOC. SOC was 3.6–9.8 times higher beneath shrub thickets than in grassland soils and soil TN was 2.5–7.7 times higher under shrub thickets. Accumulation rates of soil and litter C were highest in the youngest thicket at 101 g m?2 yr?1 and declined with increasing thicket age. Expansion of shrubs on barrier islands, which have low levels of soil carbon and high potential for ANPP, has the potential to significantly increase ecosystem C sequestration.  相似文献   

2.
Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July 1997 following a 7‐year continuous fertilization. We found that although there was no significant difference in total SOC in the top 0–10 cm of the soils between the fertilization plots (5.42±0.18 kg m?2) and the control plots (5.27±0.22 kg m?2), the proportion of the heavy‐fraction organic C in the total SOC was significantly higher in the fertilized plots (59%) than in the control plots (46%) (P<0.05). The annual decomposition rate of fertilized leaf litter was 13% higher than that of the control leaf litter. We also found that fertilization significantly increased microbial biomass (fungi+bacteria) with 952±48 mg kg?1soil in the fertilized plots and 755±37 mg kg?1soil in the control plots. Our results suggest that fertilization in tropical forests may enhance long‐term C sequestration in the soils of tropical wet forests.  相似文献   

3.
Increasing rainfall and longer drought conditions lead to frequent changes in soil moisture that affect soil organic carbon (SOC) mineralization. However, how soil moisture affects response of SOC mineralization to litter addition in forest ecosystems remains unexplored. We added 13C-labeled litter to subtropical forest soils with three mass water contents (L, 21%; M, 33%; H, 45%). Carbon dioxide production was monitored, and the composition of soil microbial communities was determined by phospholipid fatty acid (PLFA). When no litter was added, SOC mineralization was greater in the M-treated soil. Litter addition promoted SOC mineralization, but this promotion was altered by soil moisture and litter type. Priming effects induced by P. massoniana leaf litter in the M-moistened soil were significantly (P < 0.05) higher than those in other treatments. Litter-derived C was approximately 55% incorporated into 18:1ω9c and 16:0 PLFAs, and this proportion was not significantly affected by soil moisture. Soil moisture affected the distribution of litter-13C in i15:0, i17:0, and cy19:0 individual PLFAs. The primed C evolution was significantly related to the ratio of Gram-positive to Gram-negative bacteria. These results suggest that changes in soil moisture could affect SOC mineralization in forest ecosystems.  相似文献   

4.
Carbon sequestration in soils is considered to be an important option for the mitigation of increasing atmospheric CO2 concentrations as a result of climate change. High carbon accumulation was observed in Lei bamboo (Phyllostachys praecox) soils when using large amounts of organic material in a mulching technique. Soil samples were collected from Lei bamboo fields in a chronosequence. The composition and stability of soil organic carbon (SOC) in the bamboo soils was investigated by a combination of 13C CPMAS NMR analysis and with a decomposition incubation experiment in the laboratory. SOC content decreased in the first 5 years after planting of Lei bamboo from the original paddy soil and increased strongly subsequently. The stability of SOC after application of the winter mulch was higher as compared to the original paddy soil with no mulching, indicating that SOC can be stored effectively within Lei bamboo fields under intensive management.  相似文献   

5.
We investigated the influence of rainfall attributes on litter decomposition over an 8-year period in a well-preserved tropical dry forest ecosystem in western Mexico. We examined the relationship between the size and number of rainfall events and rainy-season litter decomposition rates and determined if this relationship varied along a landscape gradient. A mass balance approach was used to estimate decomposition rate in four permanent 2,400 m2 plots located in two small watersheds. Watershed I included three plots in different landscape positions (upper, middle, and lower) in the elevation gradient, whereas Watershed IV included one plot in the middle position. Surface litter C mass was lower in the rainy than in the dry season in all plots in response to seasonal fluctuations in rainfall. The frequency of small (≤5 mm) and medium (5.1–9.9 mm) size rainfall events largely did not correlate with litter decomposition, but the frequency of large events (≥10 mm) had a positive correlation with decomposition rates (P < 0.05), except in plot IV (P < 0.1). Decomposition rates were similar among plots at the different landscape positions within Watershed I (P > 0.05). The relevance of large rainfall events (≥10 mm) in rainy-season litter decomposition suggests that changes in the precipitation regime which alter the frequency of these rainfall pulses or increase their variability would affect the vulnerability of the litter C and nutrient pools to extreme events.  相似文献   

6.
In water-limited ecosystems, small rainfall events can have dramatic impacts on microbial activity and soil nutrient pools. Plant community phenology and life span also affect soil resources by determining the timing and quantity of plant nutrient uptake, storage, and release. Using the replacement of C3–C4 perennial grasses by the invasive annual grass Bromus tectorum as a case study, we investigated the influence of phenology and life span on pulse responses and sizes of soil carbon (C) and nitrogen (N) pools. We hypothesized that available and microbial C and N would respond to small rainfall events and that B. tectorum invasion would increase soil C and N pools by reducing inter-annual plant C and N storage and alter seasonal pool dynamics by changing the timing of plant uptake and litter inputs. We tested our hypotheses by simulating small rainfall events in B. tectorum and perennial grass communities three times during the growing season. Microbial pools responded strongly to soil moisture and simulated rainfall events, but labile C and N pools were affected weakly or not at all. All pools were larger beneath B. tectorum than perennial grasses. Soil C and N pools increased after senescence in both communities. Our results suggest that transforming a perennial into a B. tectorum dominated community increases the overall size of soil C and N pools by decreasing plant C and N storage and changes seasonal pool dynamics by altering dominant plant phenology. Our results indicate strong roles for water, life span and phenology in controlling soil C and N pools and begin to elucidate the biogeochemical effects of altering plant community phenology and life span.  相似文献   

7.
基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析   总被引:15,自引:0,他引:15  
王鹏  陈波  张华 《生态学报》2017,37(5):1650-1658
采用高通量测序技术分析了鄱阳湖典型湿地土壤细菌群落特征。测序结果表明,不同植被土壤细菌群落丰度与多样性的排序相同:苔草带苔草-虉草带芦苇带泥滩带藜蒿带。沿湖面至坡地,空间位置相近的土壤细菌群落结构具有更大的相似性,苔草-虉草带、苔草带和芦苇带的细菌群落结构相近,泥滩带和藜蒿带的细菌群落结构差异较大。变形菌门(30.0%)是湿地土壤平均相对丰度最高的门,其次为酸杆菌门(16.7%)和绿弯菌门(16.5%);多数门分类细菌相对丰度沿湖面至坡地存在一定变化趋势。硝化螺菌属是第一大属分类水平细菌群落。在土壤化学指标中,与鄱阳湖湿地细菌群落相关性较大的是总磷、铵态氮和有机质含量。以上研究结果表明,鄱阳湖湿地不同植被土壤细菌群落具有结构性差异,但沿湖面至坡地存在规律性变化。  相似文献   

8.
Recent studies on the effects of calcium (Ca) additions on soil carbon (C) cycling in organic soil horizons present conflicting results, with some studies showing an increase in soil C storage and others a decrease. We tested the legacy effects of soil Ca additions on C and nitrogen (N) retention in a long-term incubation of soils from a plot-scale field experiment at the Hubbard Brook Experimental Forest, NH, USA. Two levels of Ca (850 and 4250 kg Ca/ha) were surface applied to field plots as the mineral wollastonite (CaSiO3) in summer of 2006. Two years after field Ca additions, Oa/A horizon soils were collected from field plots and incubated in the laboratory for 343 days to test Ca effects on C mineralization, dissolved organic carbon (DOC) export, and net N transformations. To distinguish mineralization of soil organic C (SOC) from that of more recent C inputs to soil, we incubated soils with and without added 13C-labeled sugar maple leaf litter. High Ca additions increased exchangeable Ca and pH compared to the control. While low Ca additions had little effect on mineralization of SOC or added litter C, high Ca additions reduced mineralization of SOC and enhanced mineralization of litter C. In litter-free incubations, δ13C of respired C was enriched in the high Ca treatment compared to the control, indicating that Ca suppressed mineralization of 13C-depleted SOC sources. Leaching of DOC and NH4 + were reduced by Ca additions in litter-free and litter-amended soils. Our results suggest that Ca availability in these organic soils influences mineralization of SOC and N primarily by stabilization processes and only secondarily through pH effects on organic matter solubility, and that SOC binding processes become important only with relatively large alterations of Ca status.  相似文献   

9.
Future climates have the potential to alter decomposition rates in tropical forest with implications for carbon emissions, nutrient cycling and retention of standing litter. However, our ability to predict impacts, particularly for seasonally wet forests in the old world, is limited by a paucity of data, a limited understanding of the relative importance of different aspects of climate and the extent to which decomposition rates are constrained by factors other than climate (e.g. soil, vegetation composition). We used the litterbag method to determine leaf litter decay rates at 18 sites distributed throughout the Australian wet tropics bioregion over a 14‐month period. Specifically, we investigated regional controls on litter decay including climate, soil and litter chemical quality. We used both in situ litter collected from litterfall on site and a standardized control leaf litter substrate. The control litter removed the effect of litter chemical quality and the in situ study quantified decomposition specific to the site. Decomposition was generally slower than for other tropical rainforests globally except in our wet and nutrient‐richer sites. This is most likely attributable to the higher latitude, often highly seasonal rainfall and very poor soils in our system. Decomposition rates were best explained by a combination of climate, soil and litter quality. For in situ litter (native to the site) this included: average leaf wetness in the dry season (LWDS; i.e. moisture condensation) and the initial P content of the leaves, or LWDS and initial C. For control litter (no litter quality effect) this included: rainfall seasonality (% dry season days with 0‐mm rainfall), soil P and mean annual temperature. These results suggest that the impact of climate change on decomposition rates within Australian tropical rainforests will be critically dependent on the trajectory of dry season moisture inputs over the coming decades.  相似文献   

10.
Roots influence root litter decomposition through multiple belowground processes. Hydraulic lift or redistribution (HR) by plants is one such process that creates diel drying–rewetting cycles in soil. However, it is unclear if this phenomenon influences decomposition. Since decomposition in deserts is constrained by low soil moisture and is stimulated when dry soils are rewetted, we hypothesized that diel drying–rewetting, via HR, stimulates decomposition of root litter. We quantified the decomposition of root litter from two desert shrubs, Artemisia tridentata ssp. tridentata and Sarcobatus vermiculatus, during spring and summer in field soil core treatments designed to have abundant roots and high magnitude HR cycles (DenseRoot) or few roots and low magnitude HR (SparseRoot). To help explain our decomposition results, we not only evaluated HR, but multiple factors (i.e., soil moisture, soil temperature, dissolved soil organic C concentrations, and litter chemistry) that are often influenced by roots and regulate decomposition. Root length density in the DenseRoot treatment was at least four times higher than in the SparseRoot treatment for both Artemisia and Sarcobatus by the beginning of spring. During spring and summer, there was only one instance when decomposition rates differed between the treatments. This occurred in soils beneath Artemisia in the summer when decomposition rates were 25% higher in the DenseRoot than in the SparseRoot treatments. Of the factors evaluated, only a threefold increase in the magnitude of drying–rewetting cycles created by HR in the DenseRoot compared to the SparseRoot treatment coincided with this change in decomposition. Additionally, the lower soil Ψw present in the Artemisia DenseRoot treatment should have resulted in a decline in decomposition rates, but the presence of higher magnitude HR cycles seemed to nullify this effect. There was no evidence of this result in Sarcobatus soils, possibly due to Sarcobatus only creating HR cycles for a short period of time in the summer before soil Ψw dropped below ?7 MPa. As hypothesized, our results suggest that the presence of high magnitude HR cycles stimulated decomposition. The most plausible mechanism for this stimulation; however, was not solely due to HR drying–rewetting cycles but HR creating a diel rhythm of root-driven water fluxes and rhizodeposition. These together heightened microbial activity and, subsequently, enhanced the decomposition of surrounding litter. Our findings are the first field data supporting suggestions that HR influences belowground ecosystem processes and demonstrates that this relationship is seasonally variable.  相似文献   

11.
Soil carbon, nitrogen, and phosphorus cycles are strongly interlinked and controlled through biological processes, and the phosphorus cycle is further controlled through geochemical processes. In dryland ecosystems, woody encroachment often modifies soil carbon, nitrogen, and phosphorus stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) concentrations following woody encroachment by taking spatially explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by Prosopis glandulosa (an N2 fixer) and other woody species during the past century in southern Texas, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns throughout the soil profile following woody encroachment, while TP increased slower than SOC and TN in topmost surface soils (0–5 cm) but faster in subsurface soils (15–120 cm). Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in subsurface soils. The encroachment of woody species dominated by N2‐fixing trees into this P‐limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the soil profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic mechanisms controlling C and N vs. P accumulation following vegetation change may vary with depth. Our findings suggest that efforts to incorporate effects of land cover changes into coupled climate–biogeochemical models should attempt to represent C‐N‐P imbalances that may arise following vegetation change.  相似文献   

12.
Soil organic carbon (SOC) up to 1 m depth originates from contemporary vegetation cover dating from past millennia. Deforestation and reforestation with economically important species is influencing soil carbon sequestration. An attempt has been made in this study to evaluate the impact of vegetation cover change (due to replacement of natural heterogeneous cover by teak and bamboo) on SOC using carbon isotopes (δ13C, 14C) in a tropical system (India). A litter decomposition study was carried out to understand the impact of differences in vegetation characteristics (specifically of leaves) on decomposition. Both experiments were carried out to look at the impact of changes in vegetation characteristics (specifically of leaves) on litter decomposition, and how these influence near term litter decomposition rates (k values) and long-term SOC content of the soil system beneath. Leaves of teak, bamboo and eight other species were selected for this study. The proportion of structural carbohydrates (lignin and cellulose) in leaves significantly (at 5 % level) influenced k values. The SOC and carbon isotope data collected in this study indicate that C3 vegetation cover in the study area could be contemporary and dominant for the past few centuries. This can be extended up to ~2,200 years from the recorded 14C values of teak cover. The study confirms that k values of leaf litter influence SOC present beneath the vegetation cover at the decadal/century time scale.  相似文献   

13.
Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha?1 after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ13C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ13C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ13C values with depth.  相似文献   

14.
Global climate models predict significant changes to the rainfall regimes of the grassland biome, where C cycling is particularly sensitive to the amount and timing of precipitation. We explored the effects of both natural interannual rainfall variability and experimental rainfall additions on net C storage and loss in annual grasslands. Soil respiration and net primary productivity (NPP) were measured in treatment and control plots over four growing seasons (water years, or WYs) that varied in wet‐season length and the quantity of rainfall. In treatment plots, we increased total rainfall by 50% above ambient levels and simulated one early‐ and one late‐season storm. The early‐ and late‐season rain events significantly increased soil respiration for 2–4 weeks after wetting, while augmentation of wet‐season rainfall had no significant effect. Interannual variability in precipitation had large and significant effects on C cycling. We observed a significant positive relationship between annual rainfall and aboveground NPP across the study (P=0.01, r2=0.69). Changes in the seasonal timing of rainfall significantly affected soil respiration. Abundant rainfall late in the wet season in WY 2004, a year with average total rainfall, led to greater net ecosystem C losses due to a ~50% increase in soil respiration relative to other years. Our results suggest that C cycling in annual grasslands will be less sensitive to changes in rainfall quantity and more affected by altered seasonal timing of rainfall, with a longer or later wet season resulting in significant C losses from annual grasslands.  相似文献   

15.
We examined chemical changes from leaf tissue to soil organic matter (SOM) to determine the persistence of plant chemistry into soil aggregate fractions. We characterized a slow (Dicranopteris linearis) and fast-decomposing species (Cheirodendron trigynum) and surface (O), and subsurface (A-horizon) SOM beneath each species using pyrolysis-gas chromatography/mass spectrometry (py-GC/MS), with and without derivatization. The live tissues of Dicranopteris had greater lignin content whereas Cheirodendron had a greater lipid, N-bearing, and polysaccharide component. Despite this difference in leaf chemistry, SOM chemistry was similar between soil aggregate fractions, but different between horizons. The O-horizon contained primarily lignin and polysaccharide biomarkers whereas the A-horizon contained polysaccharide, aromatic, and N-derived compounds, indicating considerable microbial processing of plant litter. The soils beneath Cheirodendron inherited a greater lipid signal composed of cutin and suberin biomarkers whereas the soils beneath Dicranopteris contained greater aromatic biomarker content, possibly derived from plant lignins. The soils beneath both species were more similar to root polysaccharides, lipids, and lignins than aboveground tissue. This study indicates that although plant-derived OM is processed vigorously, species-specific biomarkers and compound class differences persist into these soils and that differences in plant chemical properties may influence soil development even after considerable reworking of plant litter by microorganisms.  相似文献   

16.
We conducted a study to evaluate the relative importance of topography, grazing, the location of individual plants (microsite), and plant species in controlling the spatial variability of soil organic matter in shortgrass steppe ecosystems. We found that the largest spatial variation occurs in concert with topography and with microsite-scale heterogeneity, with relatively little spatial variability due to grazing or to plant species. Total soil C and N, coarse and fine particulate organic matter C and N, and potentially mineralizable C were significantly affected by topography, with higher levels in toeslope positions than in midslopes or summits. Soils beneath individual plants (Bouteloua gracilis and Opuntia polyacantha) were elevated by 2–3 cm relative to surrounding soils. All pools of soil organic matter were significantly higher in the raised hummocks directly beneath plants than in the soil surface of interspaces or this layer under plants. High levels of mineral material in the hummocks suggest that erosion is an important process in their formation, perhaps in addition to biotic accumulation of litter beneath individual plants. Over 50 y of heavy grazing by cattle did not have a significant effect on most of the soil organic matter pools we studied. This result was consistent with our hypothesis that this system, with its strong dominance of belowground organic matter, is minimally influenced by aboveground herbivory. In addition, soils beneath two of the important plant species of the shortgrass steppe, B. gracilis and O. polyacantha, differed little from one another. The processes that create spatial variability in shortgrass steppe ecosystems do not affect all soil organic matter pools equally. Topographic variability, developing over pedogenic time scales (centuries to thousands of years), has the largest effect on the most stable pools of soil organic matter. The influence of microsite is most evident in the pools of organic matter that turn over at time scales that approximate the life span of individual plants (years to decades and centuries).  相似文献   

17.
Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long‐term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse‐textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2‐equivalents could theoretically be stored in A horizons of cultivated soils – four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.  相似文献   

18.

Background and Aims

Rainfall is expected to show greater and more variable changes in response to anticipated rising of earth surface temperatures than most other climatic variables, and will be a major driver of ecosystem change.

Methods

We studied the effects of predicted changes in California’s rainy season for storage and stabilization mechanisms of soil organic matter (SOM). In a controlled and replicated experiment, we amended rainfall over large plots of natural grassland in accordance with alternative scenarios of future climate change.

Results

We found that increases in annual rainfall have important consequences for soil carbon (C) storage, but that the strength and even direction of these effects depend critically on seasonal timing. Additional rainfall during the winter rainy season led to C loss from soil while additions after the typical rainy season increased soil C content. Analysis of MIneral-Organic Matter (OM) associations reveals a potentially powerful mechanism underlying this difference: increased winter rainfall greatly diminished the role of Fe and Al oxides in SOM stabilization. Dithionite extractable crystalline Fe oxides explained more than 35% of the variability in C storage under ambient control and extended spring rainfall conditions, compared to less than 0.01% under increased winter rainfall. Likewise, poorly crystalline Fe and Al oxides explained more than 25 and 40% of the variability in C storage in the control and extended spring rainfall treatments, respectively, but less than 5% in the increased winter rainfall treatment.

Conclusions

Increases in annual precipitation identical in amount but at three-month offsets produced opposite effects on soil C storage. Such clear differences in the amount and chemical composition of SOM, and in the vertical distribution of oxides in the soil profile in response to treatment timing carry important implications for the C sequestration trajectory of this ecosystem.  相似文献   

19.
Nitrogen fertilizer and harvest management will alter soils under bioenergy crop production and the long‐term effects of harvest timing and residue removal remain relatively unknown. Compared to no‐tilled corn (NT‐C, Zea mays L.), switchgrass (Panicum virgatum L.) is predicted to improve soil properties [i.e. soil organic C (SOC), soil microbial biomass (SMB‐C), and soil aggregation] due to its perennial nature and deep‐rooted growth form, but few explicit field comparisons exist. We assessed soil properties over 9 years for a rainfed study of N fertilizer rate (0, 60, 120, and 180 kg N ha?1) and harvest management on switchgrass (harvested in August and postfrost) and NT‐C (with and without 50% stover removal) in eastern NE. We measured SOC, aggregate stability, SMB‐C, bulk density (BD), pH, P and K in the top 0–30 cm. Both NT‐C and switchgrass increased SMB‐C, SOC content, and aggregate stability over the 9 years, reflecting improvement from previous conventional management. However, the soils under switchgrass had double the percent aggregate stability, 1.3 times more microbial biomass, and a 5–8% decrease in bulk density in the 0–5 and 5–10 cm depths compared to NT‐C. After 9 years, cumulative decrease in available P was significantly greater beneath NT‐C (?24.0 kg P ha?1) compared to switchgrass (?5.4 kg P ha?1). When all measured soil parameters were included in the Soil Management Assessment Framework (SMAF), switchgrass improved soil quality index over time (ΔSQI) in all depths. NT‐C without residue removal did not affect ΔSQI, but 50% residue removal decreased ΔSQI (0–30 cm) due to reduced aggregate stability and SMB‐C. Even with best‐management practices such as NT, corn stover removal will have to be carefully managed to prevent soil degradation. Long‐term N and harvest management studies that include biological, chemical, and physical soil measurements are necessary to accurately assess bioenergy impacts on soils.  相似文献   

20.
Decomposition of leaf litter and its incorporation into the mineral soil are key components of the C cycle in forest soils. In a 13C tracer experiment, we quantified the pathways of C from decomposing leaf litter in calcareous soils of a mixed beech forest in the Swiss Jura. Moreover, we assessed how important the cold season is for the decomposition of freshly fallen leaves. The annual C loss from the litter layer of 69–77% resulted mainly from the C mineralization (29–34% of the initial litter C) and from the transfer of litter material to the deeper mineral soil (>4 cm) by soil fauna (30%). Although only 4–5% of the initial litter C was leached as dissolved organic carbon (DOC), this pathway could be important for the C sequestration in soils in the long term: The DOC leached from the litter layer was mostly retained (95%) in the first 5 cm of the mineral soil by both physico-chemical sorption and biodegradation and, thus, it might have contributed significantly to the litter-derived C recovered in the heavy fraction (>1.6 g cm?3) at 0–4 cm depth (4% of the initial litter C). About 80% of the annual DOC leaching from the litter layer occurred during the cold season (Nov–April) due to an initial DOC flush of water-soluble substances. In contrast, the litter mineralization in winter accounted for only 25% of the annual C losses through CO2 release from the labelled litter. Nevertheless, the highest contributions (45–60%) of litter decay to the heterotrophic soil respiration were observed on warm winter days when the mineral soil was still cold and the labile litter pool only partly mineralized. Our 13C tracing also revealed that: (1) the fresh litter C only marginally primed the mineralization of older SOM (>1 year); and (2) non-litter C, such as throughfall DOC, contributed significantly to the C fluxes from the litter layer since the microbial biomass and the DOC leached from the litter layer contained 20–30% and up to 60% of unlabelled C, respectively. In summary, our study shows that significant amounts of recent leaf litter C (<1 year) are incorporated into mineral soils and that the cold season is clearly less important for the litter turnover than the warm season in this beech forest ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号