首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Membrane lipids—phospholipids, fatty acids, and cholesterol—participate in thermal adaptation of ectotherms (bacteria, amphibians, reptiles, fishes) mainly via changes in membrane viscosity caused by the degree of fatty acids unsaturation, cholesterol/phospholipids ratio, and phospholipid composition. Studies of thermal adaptation of endotherms (mammals and birds) revealed the regulatory role of lipids in hibernation. Cholesterol and fatty acids participate in regulation of the parameters of torpor, gene expression, and activity of enzymes of lipid metabolism. Some changes in lipid metabolism during artificial and natural hypobiosis, namely, increased concentration of cholesterol and fatty acids in blood and decreased cholesterol concentration in neocortex, are analogous to those observed under stress conditions and coincide with mammalian nonspecific reactions to environmental agents. It is shown that the effects of artificial and natural hypobiosis on lipid composition of mammalian cell membranes are different. Changes in lipid composition cause changes in membrane morphology during mammalian hibernation. The effect of hypobiosis on lipid composition of membranes and cell organelles is specific and seems to be defined by the role of lipids in signaling systems. Comparative study of lipid metabolism in membranes and organelles during natural and artificial hypobiosis is promising for elucidation of adaptation of mammals to low ambient temperatures.  相似文献   

2.
The influence of hypothermia-hypoxia-hypercapnia on ornithine decarboxylase (ODC, EC 4.1.1.17) activities in rat organs and tissues and also on the thymocyte distribution throughout the cell cycle stages was studied. The state of artificial hypobiosis in rats on decrease in the body temperature to 14.4–18.0°C during 3.0–3.5 h was accompanied by drops in the ODC activities in the neocortex and liver by 50–60% and in rapidly proliferating tissues (thymus, spleen, and small intestine mucosa) by 80% of the control value. In kidneys the ODC activity raised to 200% of the control level. Twenty-four hours after termination of the cooling and replacing the rats under the standard conditions, the ODC activities in the neocortex, liver, kidneys, spleen, and intestinal mucosa returned to the control values, but remained decreased in the thymus. Forty-eight hours later the ODC activities in the thymus and spleen exceeded the normal level. The distribution of thymocytes throughout the cell cycle stages did not change in rats in the state of hypothermia (hypobiosis); 24 and 48 h after termination of the cooling the fraction of thymocytes in the S stage was decreased and the fraction of the cells in the G0+G1 stage was increased. The normal distribution of thymocytes throughout the cell cycle stages recovered in 72 h. Thus, in the thymus the diminution of the ODC activity preceded the suppression of the cell proliferation rate. The tissue-specific changes in the ODC activity are suggested to reflect adaptive changes in the functional and proliferative activities of organs and tissues during the development of hypobiosis under conditions of hypothermia-hypoxia-hypercapnia.  相似文献   

3.
Reproducible visualization of neurons and glia in human brain is essential for quantitative studies of the cellular changes in neurological disease. However, immunohistochemistry in human brain specimens is often compromised because of prolonged fixation. To select cell lineage-specific antibodies for quantitative studies of neurons and the major types of glia, we used 29 different antibodies, different epitope retrieval methods, and different detection systems to stain tissue arrays of formalin-fixed human brain. The screening pointed at CD45/leukocyte common antigen (LCA), CD68(KP1), 2',3' cyclic nucleotide phosphatase (CNPase), glial fibrillary acidic protein (GFAP), HLA-DR, Ki67, neuronal nuclei (NeuN), p25alpha-antigen, and S100beta as candidates for future cell counting purposes, because these markers visualized specific neuronal and glial cell bodies. However, significant negative correlation between staining result and formalin fixation was observed by blinded scoring of staining for CD45/LCA, CNPase, GFAP, and NeuN in brain specimens fixed by immersion and stored up to 10 years in 4% formalin solution at room temperature, independent of donor sex and postmortem interval. In contrast, improved preservation of NeuN and CNPase staining, and full preservation of GFAP and CD45/LCA staining in tissue fixed by perfusion and stored for up to 3 years in 0.1% paraformaldehyde solution at 4C, indicated that immunohistochemistry can be performed in well-preserved biobank material.  相似文献   

4.
5.
6.
7.
8.
V A Ivanov 《Radiobiologiia》1987,27(5):586-590
Nuclear DNA synthesis in neocortex neurons of neonatal 14- and 60-day rats after in vitro irradiation of isolated sections was estimated by the incorporation of a labeled precursor into DNA. gamma- and UV-radiation increased the rate of DNA synthesis in the cells of animals of all studied age groups. However, the level of the UV-induced synthesis sharply dropped during the postnatal ontogenesis while gamma-radiation-induced synthesis decreased slightly. The peculiarities revealed in the repair DNA synthesis seem to be influenced by the process of postnatal differentiation of a neuron accompanied by the nucleosome length shortening and the decrease in the DNA-polymerase alpha content.  相似文献   

9.
10.
Glucose, free fatty acids and lipid fatty acid spectrum were studied in arterial and right atrial blood and myocardium of 122 rats during induction and prolongation of artificial hypobiosis (3 and 24 hours) at body temperature of 30 and 20 degrees C. Prolongation of hypobiosis was shown to be accompanied by enhanced participation of free fatty acids in the myocardial energy metabolism. Lipid fatty acid spectrum in the myocardium was characterized by the decrease in linoleic and palmitooleic acid content and the increase in oleic, palmitic, stearic and arachidonic acid levels.  相似文献   

11.
12.
The contents of lipids in the tissue and the nuclei of liver cells during artificial hypobiosis, as well as in the nuclei of liver cells for 3 days after the cessation of cooling in rats, were studied. In the artificial hypobiosis and in the state of normothermia 24 h after the cessation of cooling, the total phospholipid content of the liver cell nuclei increased by 20% due to minor phospholipids. The levels of sphingomyelin, phosphatidylinositol, phosphatidylserine, cardiolipin, and lysophosphatidylcholine were doubled in hypobiosis and then nonmonotonically returned to the normal level within 72 h. In the state of artificial hypobiosis, the levels of fatty acids, cholesterol, and diglycerides increased by 30–40%. The state of artificial hypobiosis did not affect the level of lipids in the liver tissue of Wistar rats. The increase of the lipid content in the liver cell nuclei of Wistar rats indicates the important role of lipids in functions of the nucleus when the energy supply and protein synthesis are inhibited under conditions of artificial hypobiosis.  相似文献   

13.
Lipid content of tissue and of fraction of microsomes in neocortex of Wistar rats was studies under artificial hypothermia, after X-ray irradiation in dose 8 Gy under conditions of normothermia and artificial hypothermia in 48 h. The condition of artificial hypothermia get by cooling of rats to 15-18 degrees C. It was shown, that in fraction of microsomes of hypothermia rats the content of phosphatidylinositol was decreased, and in 48 h after cooling of rats the amount of protein, total and individual phospholipids was increased. The lipid content in tissue and in fraction of microsomes of rats, which were irradiated in normotermia, had no changes after 48 h. In fraction of microsomes of rats, which were irradiated after hypothermia, the amount of protein, total phospholipids, sphingomyelin, phosphatidylcholine and phosphatidylserine is increased trustworthy. Thus, we think, that radioprotective effect of hypotermia may be connected with the accumulation of proteins and of phospholipids in the endoplasmic reticulum membranes of neocortex.  相似文献   

14.
Lipid content and composition of DNA, histone and non-histone proteins of Ehrlich ascites tumor cell chromatin were investigated. All fractions contained small amounts of lipids, mostly neutral ones, in a specific distribution. According to isotopic studies with labeled lipid precursors, incorporation took place mainly in the non-histone fraction. These findings suggest that neutral lipids attached to non-histone chromosomal proteins may also contribute to the regulatory functions ascribed to phospholipids.  相似文献   

15.
16.
17.
18.
19.
Olfactory bulb ensheathing glia (OEG) have attracted special attention during the last few years because of their unique properties in promoting regeneration of adult mammalian central nervous system (CNS) components. However the molecular and cellular characteristics responsible for this capacity remain to be revealed. Such studies are presently hindered by the lack of a plentiful source of homogenous OEG. Thus the availability of immortalized OEG lines maintaining the regenerative characteristics of the primary cultures would represent an unlimited source of OEG for use not only in biochemical analyses of neuroregenerative mechanisms but also to characterize their regenerative properties in models in culture and in vivo. We have immortalized primary rat OEG using the SV40 large T antigen expressed from a constitutive cellular promotor, and report here the isolation and characterization of clonal lines. These OEG clonal lines were comparable to primary OEG and Schwann cells in the promotion of axonal regeneration of mature rat retinal ganglion neurons (RGN) but, significantly, this culture assay system more closely reflects the in vivo reparative properties of OEG on transected nerves than other assays of neuritogenesis in that it revealed OEG cells to promote the growth of a larger number of long axons than Schwann cells. Using this assay we were able to grade our OEG lines for their neuroregenerative capacity, opening the possibility of identifying molecules with correlative expression levels in these cells. Our preliminary characterization revealed that the expression level of a classical OEG marker, the p75-NGF receptor, does not correlate with neuroregenerative capacity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号