首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1), a transforming growth factor β (TGF-β) type I receptor, and endoglin, a TGF-β co-receptor, play an essential role in vascular development and pathological angiogenesis. Several agents that interfere with ALK1 and endoglin function are currently in clinical trials for antiangiogenic activity in cancer therapy. One of these agents, PF-03446962 (anti-hALK1 antibody), shows promising results in the clinic. However, its effects on endothelial cell function and mechanism of action are unclear. Here we demonstrate that anti-hALK1 antibody selectively recognizes human ALK1. The anti-hALK1 antibody interfered with bone morphogenetic protein 9 (BMP9)-induced signaling in endothelial cells. Consistent with this notion, anti-hALK1 antibody was found to compete highly efficiently with the binding of the ALK1 ligand BMP9 and TGF-β to ALK1. Moreover, it prevented BMP9-dependent recruitment of co-receptor endoglin into this angiogenesis-mediating signaling complex. In addition, we demonstrated that anti-hALK1 antibody inhibited endothelial cell sprouting but did not directly interfere with vascular endothelial growth factor (VEGF) signaling, VEGF-induced proliferation, and migration of endothelial cells. Finally, we demonstrated that BMP9 in serum is essential for endothelial sprouting and that anti-hALK1 antibody inhibits this potently. Our data suggest that both the VEGF/VEGF receptor and the BMP9/ALK1 pathways are essential for stimulating angiogenesis, and targeting both pathways simultaneously may be an attractive strategy to overcome resistance to antiangiogenesis therapy.  相似文献   

3.
4.
5.
Transforming growth factor-beta (TGFbeta) regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways. Activin receptor-like kinase-1 (ALK1) induces Smad1/5 phosphorylation, leading to an increase in endothelial cell proliferation and migration, while ALK5 promotes Smad2/3 activation and inhibits both processes. Here, we report that ALK5 is important for TGFbeta/ALK1 signaling; endothelial cells lacking ALK5 are deficient in TGFbeta/ALK1-induced responses. More specifically, we show that ALK5 mediates a TGFbeta-dependent recruitment of ALK1 into a TGFbeta receptor complex and that the ALK5 kinase activity is required for optimal ALK1 activation. TGFbeta type II receptor is also required for ALK1 activation by TGFbeta. Interestingly, ALK1 not only induces a biological response opposite to that of ALK5 but also directly antagonizes ALK5/Smad signaling.  相似文献   

6.
We have previously reported that Nodal, a member of the TGF-β superfamily, acts through activin receptor-like kinase 7 (ALK7) to inhibit ovarian cancer cell proliferation. To determine the mechanism underlying their effects, a cell cycle gene array was performed and cyclin G2 mRNA was found to be strongly up-regulated by Nodal and ALK7. To study the function and regulation of cyclin G2 in ovarian cancer cells, expression constructs were generated. We found that cyclin G2 protein level decreased rapidly after transfection, and this decrease was prevented by 26S proteasome inhibitors. Immunoprecipitation and pull-down studies showed that ubiquitin, Skp1, and Skp2 formed complexes with cyclin G2. Knockdown of Skp2 by siRNA increased, whereas overexpression of Skp2 decreased cyclin G2 levels. Nodal and ALK7 decreased the expression of Skp1 and Skp2 and increased cyclin G2 levels. Overexpression of cyclin G2 inhibited cell proliferation whereas cyclin G2-siRNA reduced the antiproliferative effect of Nodal and ALK7. Taken together, these findings provide strong evidence that cyclin G2 is degraded by the ubiquitin–proteasome pathway and that Skp2 plays a role in regulating cyclin G2 levels. Furthermore, our results also demonstrate that the antiproliferative effect of Nodal/ALK7 on ovarian cancer cells is in part mediated by cyclin G2.  相似文献   

7.
8.
9.
10.
11.
Although the role of the TGF beta superfamily members in the regulation of ovarian folliculogenesis has been extensively studied, their involvement in follicular atresia is not well understood. In the present study, we have demonstrated for the first time that Nodal, a member of the TGF beta superfamily, is involved in promoting follicular atresia as evidenced by the following: 1) colocalization of Nodal and its type I receptor Activin receptor-like kinase 7 (ALK7) proteins in the granulosa cells was only observed in atretic antral follicles, whereas they were present in theca cells and granulosa cells of healthy follicles, respectively; 2) addition of recombinant Nodal or overexpression of Nodal by adenoviral infection induced apoptosis of otherwise healthy granulosa cells; 3) constitutively active ALK7 (ALK7-ca) overexpression mimicked the function of Nodal in the induction of granulosa cell apoptosis. Furthermore, overexpression of Nodal or ALK7-ca increased phosphorylation and nuclear translocation of Smad2, decreased X-linked inhibitor of apoptotic proteins (Xiap) expression at both mRNA and protein level and phospho-Akt content, as well as triggered mitochondrial release of death proteins Smac/DIABLO, Omi/HtrA2, and cytochrome c in the granulosa cells. Dominant-negative Smad2 significantly attenuated ALK7-ca-induced down-regulation of Xiap and thus rescued granulosa cells from undergoing apoptosis. In addition, whereas up-regulation of Xiap significantly attenuated ALK7-ca-induced apoptosis, down-regulation of Xiap sensitized granulosa cells to ALK7-ca-induced apoptosis. Furthermore, ALK7-ca-induced apoptosis was significantly attenuated by forced expression of activated Akt, and Akt rescued granulosa cells from undergoing apoptosis via proteasome-mediated ALK7 degradation. Taken together, Nodal plays an atretogenic role in the ovary where it induces granulosa cell apoptosis through activation of Smad2, down-regulation of the key survival molecules Xiap and phospho-Akt, as well as the activation of mitochondrial death pathway.  相似文献   

12.
13.
14.
15.
We have reported previously that human prostate-derived sterile 20-like kinase (PSK) 1 alters actin cytoskeletal organization and binds to microtubules, regulating their organization and stability. We have shown a structurally related protein kinase PSK2, which lacks a microtubule-binding site, activated c-Jun N-terminal kinase (JNK), and induced apoptotic morphological changes that include cell contraction, membrane blebbing, and apoptotic body formation. Apoptotic stimuli increased the catalytic activity of endogenous PSK2 and JNK, and dominant negative JNK or a physiological inhibitor of JNK blocked these apoptotic morphological responses to PSK2, demonstrating a requirement for JNK. PSK2 also stimulated the cleavage of Rho kinase-1 (ROCK-I), and the activity of ROCK-I was required for PSK2 to induce cell contraction and membrane blebbing. The activation of caspases was also needed for the induction of membrane blebbing by PSK2, which was itself a substrate for caspase 3. PSK2 therefore regulates apoptotic morphology associated with the execution phase of apoptosis, which involves dynamic reorganization of the actin cytoskeleton, via downstream targets that include JNK and ROCK-I. Our findings suggest that PSKs form a subgroup of sterile 20 (STE20)-like kinases that regulate different cytoskeletal processes.  相似文献   

16.
Monocyte chemoattractant protein (MCP-1) is an important mediator for macrophage recruitment in atherosclerosis and various glomerulonephritis. However, the role of MCP-1 and its receptor CCR2 in the progression of diabetic nephropathy remains unknown. Using a type 1 diabetic nephropathy model that shows noticeable glomerulosclerosis, we examined the role of MCP-1/CCR2 by propagermanium (Pro; CCR2 antagonist) treatment, and confirmed it by transfection of plasmids carrying the 7ND (a mutant of MCP-1) gene. We measured the mesangial matrix expansion, type IV collagen (Col4), transforming growth factor (TGF)-beta1 positive area, and macrophage infiltration in glomeruli after 12 weeks. Mesangial matrix expansion and macrophage infiltration were increased in diabetic mice and inhibited by Pro or 7ND-treatment. Increased glomerular expression of Col4 and TGF-beta1 in diabetic mice was also ameliorated. Thus blocking the MCP-1/CCR2 pathway ameliorated glomerulosclerosis, indicating that the MCP-1/CCR2 pathway plays a crucial role in the progression of diabetic nephropathy.  相似文献   

17.

Background

To investigate disease progression the first 12 months after diagnosis in children with type 1 diabetes negative (AAB negative) for pancreatic autoantibodies [islet cell autoantibodies(ICA), glutamic acid decarboxylase antibodies (GADA) and insulinoma-associated antigen-2 antibodies (IA-2A)]. Furthermore the study aimed at determining whether mutations in KCNJ11, ABCC8, HNF1A, HNF4A or INS are common in AAB negative diabetes.

Materials and methods

In 261 newly diagnosed children with type 1 diabetes, we measured residual β-cell function, ICA, GADA, and IA-2A at 1, 6 and 12 months after diagnosis. The genes KCNJ11, ABCC8, HNF1A, HNF4A and INS were sequenced in subjects AAB negative at diagnosis. We expressed recombinant K-ATP channels in Xenopus oocytes to analyse the functional effects of an ABCC8 mutation.

Results

Twenty-four patients (9.1%) tested AAB negative after one month. Patients, who were AAB-negative throughout the 12-month period, had higher residual β-cell function (P = 0.002), lower blood glucose (P = 0.004), received less insulin (P = 0.05) and had lower HbA1c (P = 0.02) 12 months after diagnosis. One patient had a heterozygous mutation leading to the substitution of arginine at residue 1530 of SUR1 (ABCC8) by cysteine. Functional analyses of recombinant K-ATP channels showed that R1530C markedly reduced the sensitivity of the K-ATP channel to inhibition by MgATP. Morover, the channel was highly sensitive to sulphonylureas. However, there was no effect of sulfonylurea treatment after four weeks on 1.0-1.2 mg/kg/24 h glibenclamide.

Conclusion

GAD, IA-2A, and ICA negative children with new onset type 1 diabetes have slower disease progression as assessed by residual beta-cell function and improved glycemic control 12 months after diagnosis. One out of 24 had a mutation in ABCC8, suggesting that screening of ABCC8 should be considered in patients with AAB negative type 1 diabetes.  相似文献   

18.
Angiotensin (ANG)-(1-7) is known to attenuate diabetic nephropathy; however, its role in the modulation of renal inflammation and oxidative stress in type 2 diabetes is poorly understood. Thus in the present study we evaluated the renal effects of a chronic ANG-(1-7) treatment in Zucker diabetic fatty rats (ZDF), an animal model of type 2 diabetes and nephropathy. Sixteen-week-old male ZDF and their respective controls [lean Zucker rats (LZR)] were used for this study. The protocol involved three groups: 1) LZR + saline, 2) ZDF + saline, and 3) ZDF + ANG-(1-7). For 2 wk, animals were implanted with subcutaneous osmotic pumps that delivered either saline or ANG-(1-7) (100 ng·kg(-1)·min(-1)) (n = 4). Renal fibrosis and tissue parameters of oxidative stress were determined. Also, renal levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), ED-1, hypoxia-inducible factor-1α (HIF-1α), and neutrophil gelatinase-associated lipocalin (NGAL) were determined by immunohistochemistry and immunoblotting. ANG-(1-7) induced a reduction in triglyceridemia, proteinuria, and systolic blood pressure (SBP) together with a restoration of creatinine clearance in ZDF. Additionally, ANG-(1-7) reduced renal fibrosis, decreased thiobarbituric acid-reactive substances, and restored the activity of both renal superoxide dismutase and catalase in ZDF. This attenuation of renal oxidative stress proceeded with decreased renal immunostaining of IL-6, TNF-α, ED-1, HIF-1α, and NGAL to values similar to those displayed by LZR. Angiotensin-converting enzyme type 2 (ACE2) and ANG II levels remained unchanged after treatment with ANG-(1-7). Chronic ANG-(1-7) treatment exerts a renoprotective effect in ZDF associated with a reduction of SBP, oxidative stress, and inflammatory markers. Thus ANG-(1-7) emerges as a novel target for treatment of diabetic nephropathy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号