首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young castrated male goats (n = 8) were used to investigate the effect of long-term treatment with recombinant methionyl bovine somatotropin in a sustained release vehicle (bST; 100 mg at seven-day intervals in a 147-day experiment) and chronic culture (24 h) of omental adipose tissue in the presence of various hormones on lipogenic responses to catecholamines during acute incubation (2 h) in a sodium acetate supplemented glucose-free buffer. The rate of fatty acid synthesis in freshly-prepared adipose explants was low and did not differ from those cultured in the absence of hormones for 24 h. Hormonal combination of insulin (17 nmol.l(-1)) plus cortisol (138 nmol.l(-1)) or insulin plus recombinant enterokinase linker bST (4.5 nmol.l(-1) increased lipogenesis (P<0.05). Further addition of bST or cortisol decreased lipogenesis significantly (P<0.05) in the controls but not significantly in bST-treated animals. Cultured explants from either control or bST-treated animals showed significant inhibition of lipogenesis by both norepinephrine (10 micromol.l(-1)) and isoprenaline (10 micromol.l(-1)). BST treatment in vivo did not increase the responsiveness of cultured explants to norepinephrine in vitro, however, the responsiveness to isoprenaline(inhibition of lipogenesis) was greater in bST-treated animals than in the controls.  相似文献   

2.
The rates of incorporation of 14C from 14C labelled acetate, glucose, alanine, leucine, isoleucine and valine into fatty acids has been measured in perirenal adipose tissue from foetal lambs and 8-month-old sheep, and into both fatty acids and acylglycerol glycerol in adipose tissue from 3-year-old sheep and 220-240 g female rats. Rates of incorporation of 14C from amino acids into fatty acids were much lower in adipose tissue from sheep (at all three ages) than from rats, whereas rates of incorporation of 14C into acylglycerol glycerol were either greater in sheep adipose tissue or the same as in rat adipose tissue. The rate of incorporation of 14C from amino acids into fatty acids decreased in the order leucine greater than alanine greater than isoleucine greater than valine in adipose tissue from rats and foetal lambs, and in the order leucine greater than alanine = isoleucine greater than valine in adipose tissue from 8-month- and 3-year-old sheep. Amino acids make a very small contribution to fatty acid synthesis in adipose tissue from sheep at all stages of development examined while fatty acids are a minor product of amino acid metabolism in sheep adipose tissue. The study provides further evidence for an important role for ATP-citrate lyase in restricting the utilization of acetyl-CoA generated in the mitochondria for fatty acid synthesis.  相似文献   

3.
Effect of propionate on lipogenesis in adipose tissue   总被引:2,自引:0,他引:2  
The metabolism of propionate in adipose tissue and its effect on lipogenesis was investigated. Fasting induced changes in propionate metabolism of adipose tissue, drastically reducing higher fatty acid synthesis and increasing glyceride-glyerol formation from low concentrations of propionate (0.25 mM). Propionate also promoted lipogenesis from acetate-1-(14)C in tissues of fasted rats, while it inhibited lipogenesis and CO(2) formation from acetate in the fed animal. Treatment with actinomycin D or ethionine abolished both the increased glyceride-glycerol formation from propionate and the promoting effect on lipogenesis from acetate. Synthesis of long-chain fatty acids from propionate-1-(14)C was increased by actinomycin treatment. The change in propionate metabolism induced by fasting is, however, not entirely due to its conversion to glyceride-glycerol, since the latter was almost completely blocked by malonate while part of the promoting effect on fatty acid synthesis persisted.  相似文献   

4.
Aspects of adipose-tissue metabolism in foetal lambs.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The mean volume of adipocytes, the rates of fatty acid and acylglycerol glycerol synthesis from various precursors (in vitro), the rates of oxidation of acetate and glucose (in vitro) and the activities of lipoprotein lipase and various lipogenic enzymes were determined for perirenal adipose tissue from foetal lambs during the last month of gestation. 2. The fall in the rate of growth of perirenal adipose tissue during the last month of gestation is associated with a diminished capacity for fatty acid synthesis and lipoprotein lipase activity, but no change in the rate of acylglycerol glycerol synthesis was observed. There was no fall in the activities of cytosolic acetyl-CoA synthetase or the NADP-linked dehydrogenases, suggesting that the decrease in the rate of fatty acid synthesis was due to an impairment at the level of acetyl-CoA carboxylase or fatty acid synthetase. 3. The rate of fatty acid synthesis from acetate was greater than that from glucose. The rate of fatty acid synthesis from glucose per adipocyte of foetal lambs was similar to that of young sheep. The characteristic metabolism of adipose tissue of the adult sheep is thus present in the foetus, despite the relatively large amounts of glucose in the foetal 'diet'.  相似文献   

5.
Metabolic inhibitors were used in vitro in an attempt to elucidate the biochemical pathways by which lactate is converted to fatty acids by bovine adipose tissue. Subcutaneous adipose tissue samples were obtained by biopsy techniques from steers fed a high-energy ration. Kynurenate (α-2-diamino-γ-oxabenzenebutanoic acid) (5–10 mm), an inhibitor of acetyl-CoA carboxylase, and cerulenin (2,3-epoxy-4-oxo-7,10-dodecadienamide) (20–100 μg/ml), an inhibitor of the fatty acid synthetase enzyme complex, inhibited fatty acid synthesis from both acetate and lactate. The hydrogen acceptor, N-methylphenazonium methosulfate (10 μm) inhibited acetate but not lactate incorporation into fatty acids. α-Cyanohydroxycinnamate (5 mm) and phenylpyruvate (10 mm), which inhibit pyruvate entry into the mitochondria and pyruvate carboxylase, respectively, decreased lipogenesis from both acetate and lactate. The effects of phenylpyruvate on lipogenesis from acetate were greater in the presence of glucose plus insulin. Agaric acid (2-hydroxy-1,2,3-nonadecanetricarboxylic acid) (0.2 and 1.0 mm), which inhibits citrate efflux from the mitochondria also decreased lipogenesis from both acetate and lactate. Fluoroacetate (2.5 mm), an inhibitor of aconitate hydratase, had no effect on lipogenesis from acetate; but, in the presence of glucose or pyruvate, decreased lactate incorporation into fatty acids. n-Butylmalonate (5 mm), which blocks malate transport across the mitochondrial membrane, decreased lipogenesis from lactate but not acetate. Malate transport during lipogenesis is not associated with an operative malate:asparate shuttle in bovine adipose tissue, as indicated by the lack of effect of either 0.2 or 1.0 mm aminooxyacetate, a transaminase inhibitor, on lipogenesis from acetate or lactate. The results suggest a functional ATP-citrate lyase:NADP-malate dehydrogenase pathway in bovine subcutaneous adipose tissue and that this pathway may be involved in lipogenesis from acetate as well as lactate.  相似文献   

6.
Previous reports that rabbit adipose tissue does not synthesize fatty acids at significant rates led us to study in detail the pathways of lipogenesis and glyceroneogenesis in this tissue. We found that rabbit adipose tissue has a low capacity for denovo fatty acid synthesis from glucose but a high capacity for synthesis from pyruvate and acetate. The tissue can also convert pyruvate to glyceride-glycerol via the dicarboxylic acid shuttle and gluconeogenic pathways. Experiments with hydroxycitrate, a potent inhibitor of citrate cleavage enzyme, demonstrated that this is an obligatory enzyme in lipogenesis from pyruvate. The lipogenic system of rabbit adipose tissue resembles that of a ruminant in that it is adapted to utilize acetate rather than glucose. However, in contrast to ruminant tissues, the limited ability to convert glucose to fatty acid results not from a deficiency in the enzymes concerned with the transport of acetyl units out of the mitochondria but from a block prior to the level of pyruvate, most likely at the hexokinase and pyruvate kinase reactions.  相似文献   

7.
1. The synthesis of long-chain fatty acids de novo was measured in the liver and in regions of adipose tissue in intact normal and genetically obses mice throughout the daily 24h cycle. 2. The total rate of synthesis, as measured by the rate of incorporation of 3H from 3H2O into fatty acid, was highest during the dark period, in liver and adipose tissue of lean or obese mice. 3. The rate of incorporation of 14C from [U-14C]glucose into fatty acid was also followed (in the same mice). The 14C/3H ratios were higher by a factor of 5-20 in parametrial and scapular fat than that in liver. This difference was less marked during the dark period (of maximum fatty acid synthesis). 4. In normal mice, the total rate of fatty acid synthesis in the liver was about twofold greater than that in all adipose tissue regions combined. 5. In obese mice, the rate of fatty acid synthesis was more rapid than in lean mice, in both liver and adipose tissue. Most of the extra lipogenesis occurred in adipose tissue. The extra hepatic fatty acids synthesized in obese mice were located in triglyceride rather than phospholipid. 6. In adipose tissue of normal mice, the rate of fatty acid synthesis was most rapid in the intra-abdominal areas and in brown fat. In obese mice, all regions exhibited rapid rates of fatty acid synthesis. 7. These results shed light on the relative significance of liver and adipose tissue (i.e. the adipose 'organ') in fatty acid synthesis in mice, on the mino importance of glucose in hepatic lipogenesis, and on the alterations in the rate of fatty acid synthesis in genetically obese mice.  相似文献   

8.
Net glucose-stimulated lipogenesis (NGSL: the rate of lipogenesis in the presence of glucose minus the rate of lipogenesis in the absence of glucose) in omental adipose tissue explants from young castrated male goats was evaluated in control animals (n = 3; placebo-treated) and in animals treated with the sustained release of recombinant bovine somatotropin (n = 4; bST; 100 mg at 7-day intervals in a 147 days lasting experiment). The rate of fatty acid synthesis was determined in acute incubations in both freshly prepared and chronically cultured explants. Adipose explants remained metabolically active and retained their ability to respond to hormones when maintained in a tissue culture medium. NGSL in explants cultured for 24 h in the presence of insulin alone or bST alone, was non-significantly increased (more in the controls) and decreased (more in bST-treated animals), respectively. However, cortisol alone decreased (P<0.05) NGSL in explants from both control and bST-treated animals. In tissues from bST-treated animals, cortisol acted synergistically with insulin to produce a higher rate of NGSL than that observed in cultures with insulin alone. bST inhibited insulin plus cortisol-stimulated lipogenesis significantly (P<0.05) in explants from bST-treated animals but non-significantly in control animals. The rates of NGSL were decreased (P<0.05) by catecholamines in explants from both control and bST-treated animals. Norepinephrine (NE) and isoprenaline (ISO) were equally effective in the controls, whereas isoprenaline was more effective than norepinephrine in bST-treated animals.  相似文献   

9.
Fatty acid metabolism and triacylglycerol synthesis are critical processes for the survival of hibernating mammals that undergo a prolonged fasting period. Fatty acid synthase, fatty-acid-CoA ligase, diacylglycerol acyltransferase, and monoacylglycerol acyltransferase activities were measured in liver and in white and brown adipose tissue, in order to determine whether enzymes of lipogenesis and triacylglycerol synthesis vary seasonally during hibernation in the yellow-bellied marmot (Marmota flaviventris). Compared with mid-winter hibernation, fatty acid synthase activity was higher in all three tissues during early spring when marmots emerged from hibernation and in mid-summer when they were feeding, consistent with the synthesis of fatty acids from the carbohydrate-rich summer diet. Fatty-acid-CoA ligase and diacylglycerol acyltransferase activities were highest in summer in white adipose tissue when triacylglycerol synthesis would be expected to be high; diacylglycerol acyltransferase activity was also high in brown adipose tissue during spring and summer. In liver, however, diacylglycerol acyltransferase specific activity was highest during hibernation, suggesting that triacylglycerol synthesis may be prominent in liver in winter. Monoacylglycerol acyltransferase activity, which may aid in the retention of essential fatty-acids, was 80-fold higher in liver than in white or brown adipose tissue, but did not vary seasonally. Its dependence on palmitoyl-CoA suggests that a divalent cation might play a role in enzyme activation. The high hepatic diacylglycerol acyltransferase activity during hibernation suggests that the metabolism of very low density lipoprotein may be important in the movement of adipose fatty acids to brown adipose tissue and muscle during the rewarming that occurs periodically during hibernation. These studies suggest that enzymes of lipid metabolism vary seasonally in the marmot, consistent with requirements of this hibernator for triacylglycerol synthesis and metabolism.Abbreviations BAT brown adipose tissue - DGAT diacylglycerol acyltransferase - FAS fatty acid synthase - K m Michaelis constant - MGAT monoacylglycerol acyltransferase - RQ respiratory quotiant - VLDL very low density lipoprotein - WAT white adipose tissue  相似文献   

10.
The metabolism of pyruvate and lactate by rat adipose tissue was studied. Pyruvate and lactate conversion to fatty acids is strongly concentration-dependent. Lactate can be used to an appreciable extent only by adipose tissue from fasted-refed rats. A number of compounds, including glucose, pyruvate, aspartate, propionate, and butyrate, stimulated lactate conversion to fatty acids. Based on studies of incorporation of lactate-2-(3)H and lactate-2-(14)C into fatty acids it was suggested that the transhydrogenation sequence of the "citrate-malate cycle"(1) was not providing all of the NADPH required for fatty acid synthesis from lactate. An alternative pathway for NADPH formation involving the conversion of isocitrate to alpha-ketoglutarate via cytosolic isocitrate dehydrogenase was proposed. Indirect support for this proposal was provided by the rapid labeling of glutamate from lactate-2-(14)C by adipose tissue incubated in vitro, as well as the demonstration that glutamate can be readily metabolized by adipose tissue via reactions localized largely in the cytosol. Furthermore, isolated adipose tissue mitochondria convert alpha-ketoglutarate to malate, or in the presence of added pyruvate, to citrate. Glutamate itself can not be metabolized by these mitochondria, a finding in keeping with the demonstration of negligible levels of NAD-glutamate dehydrogenase activity in adipose tissue mitochondria. Pyruvate stimulated alpha-ketoglutarate and malate conversion to citrate and reduced their oxidation to CO(2). It is proposed that under conditions of excess generation of NADH malate may act as a shuttle carrying reducing equivalents across the mitochondrial membrane. Malate at low concentrations increased pyruvate conversion $$Word$$ citrate and markedly decreased the formation of CO(2) by isolated adipose tissue mitochondria. Malate also stimulated citrate and isocitrate metabolism by these mitochondria, an effect that could be blocked by 2-n-butylmalonate. This potentially important role of malate in the regulation of carbon flow during lipogenesis is underlined by the observation that 2-n-butylmalonate inhibited fatty acid synthesis from pyruvate, but not from glucose and acetate, and decreased the stimulatory effect of pyruvate on acetate conversion to fatty acids.  相似文献   

11.
Perinatal (1-2 days of age) and one-month-old (24-32 days of age) male goats were used to investigate the effect of age and long-term culture (24 h) of perirenal and omental adipose explants in the presence of insulin, cortisol and bovine somatotropin (alone or in different combinations) on net glucose-stimulated lipogenesis (NGSL, i.e. the rate of lipogenesis in the presence of glucose minus the rate of lipogenesis in the absence of glucose) in the absence and in the presence of catecholamines in acute incubations (2 h). Mean values of NGSL in both freshly prepared and cultured explants were consistently lower in perinatal than in one-month-old goats. Cortisol alone decreased and combinations of insulin plus cortisol increased NGSL in perirenal explants of one-month-old animals. When perirenal explants from these one-month-old goats were cultured in the presence of insulin plus cortisol plus bovine somatotropin, the rates of lipogenesis were lower than those in cultures with insulin plus cortisol. No such effects of these hormones were noted in omental explants of both perinatal and one-month-old animals. In freshly prepared perirenal and omental explants, the rates of NGSL were inhibited by isoprenaline in tissues of both groups of animals and by noradrenaline in omental tissues of animals of the older group only. The mean values of NGSL in cultured explants of perinatal animals were not affected by noradrenaline. Isoprenaline inhibited NGSL in omental but not in perirenal tissue. In older animals the rates of NGSL were decreased by both noradrenaline and isoprenaline in perirenal and omental adipose tissues. Isoprenaline was more effective than noradrenaline in perirenal adipose tissue.  相似文献   

12.
Brain insulin controls adipose tissue lipolysis and lipogenesis   总被引:1,自引:0,他引:1  
White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality.  相似文献   

13.
1. The effect of tumour burden on lipid metabolism was examined in virgin, lactating and litter-removed rats. 2. No differences in food intake or plasma insulin concentrations were observed between control animals and those bearing the Walker-256 carcinoma (3-5% of body wt.) in any group studied. 3. In virgin tumour-bearing animals, there was a significant increase in liver mass, blood glucose and lactate, and plasma triacylglycerol; the rate of oxidation of oral [14C]lipid to 14CO2 was diminished, and parametrial white adipose tissue accumulated less [14C]lipid compared with pair-fed controls. 4. These findings were accompanied by increased accumulation of lipid in plasma and decreased white-adipose-tissue lipoprotein lipase activity. 5. In lactating animals, tumour burden had little effect on the accompanying hyperphagia or on pup weight gain; tissue lipogenesis was unaffected, as was tissue [14C]lipid accumulation, plasma [triacylglycerol] and white-adipose-tissue and mammary-gland lipoprotein lipase activity. 6. On removal (24 h) of the litter, the presence of the tumour resulted in decreased rates of lipogenesis in the carcass, liver and white and brown adipose tissue, decreased [14C]lipid accumulation in white adipose tissue, but increased accumulation in plasma and liver, increased plasma [triacylglycerol] and decreased lipoprotein lipase activity in white adipose tissue. 7. The rate of triacylglycerol/fatty acid substrate cycling was significantly decreased in white adipose tissue of virgin and litter-removed rats bearing the tumour, but not in lactating animals. 8. These results demonstrate no functional impairment of lactation, despite the presence of tumour, and the relative resistance of the lactating mammary gland to the disturbance of lipid metabolism that occurs in white adipose tissue of non-lactating rats with tumour burden.  相似文献   

14.
Seasonal changes in subcutaneous adipose tissue metabolism and serum metabolite and hormone concentrations are described in virgin ewes fed a fixed amount of a cereal mixture plus hay ad libitum. Body weight, adipocyte mean cell volume, the rates of fatty acid and acylglycerol glycerol synthesis, and lipoprotein lipase activity increased from October to May and then decreased over the following five months. These changes are probably due to an increase in voluntary food intake leading to increased availability of acetate for fatty acid synthesis and also a probable rise in serum insulin concentration. Seasonal changes in adipose tissue metabolism in sheep are modulated by pregnancy and lactation, possibly mediated in part by changes in the serum insulin: growth hormone ratio. Although seasonal changes in adipose tissue metabolism are paralleled by changes in serum prolactin concentration, prolactin probably does not have a direct effect on adipose tissue metabolism.  相似文献   

15.
Factors influencing the utilization of ketone bodies by mouse adipose tissue in vitro were studied. Epididymal fat pads can oxidize DL-Beta-hydroxybutyrate-3-(14)C and acetoacetate-3-(14)C to (14)CO(2) as well as convert these compounds to fatty acid-(14)C. An increased output of (14)CO(2) from Beta-hydroxybutyrate-3-(14)C was noted in response to glucose plus insulin, succinate, oxaloacetate, L-asparate, and L-malate. Fatty acid synthesis from Beta-hydroxybutyrate was enhanced by glucose plus insulin, L-aspartate, L-malate, oxaloacetate, and citrate. Nicotinamide stimulated the oxidation of Beta-hydroxybutyrate but not of acetoacetate to CO(2), and did not affect fatty acid synthesis from either ketone body. Nicotinamide increased NAD(+) and NADP(+) levels in epididymal fat pads without affecting the concentration of NADH and NADPH. "Superlipogenesis" caused by fasting the mice for 48 hr and re-feeding them for 24 hr sharply enhanced CO(2) output and lipogenesis from Beta-hydroxybutyrate. The activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconic dehydrogenase, NADP-malic dehydrogenase, and citrate cleavage enzyme from mouse adipose tissue were increased during "superlipogenesis." Free fatty acid release by epididymal fat pads in vitro was slightly increased by Beta-hydroxybutyrate. The relationship of ketone body metabolism and lipogenesis in adipose tissue is discussed.  相似文献   

16.
17.
18.
The influence of feeding rats a high-energy diet for 7 days on fatty acid synthesis in brown adipose tissue, white adipose tissue and liver of the rat was investigated. The incorporation of 3H2O and [U-14C]glucose into fatty acid was measured in vivo. The rats fed the high-energy diets had higher rates of fatty acid synthesis in white adipose tissue than the controls fed on chow, while fatty acid synthesis in brown adipose tissue and liver was either decreased or unchanged relative to that of controls fed on chow. After an oral load of [U-14C]glucose the incorporation of radioactivity into tissue fatty acid was several-fold higher in brown adipose tissue than in white adipose tissue in rats fed on chow. In rats fed the high-energy diets, incorporation of radioactivity into fatty acid in brown adipose tissue was decreased while that into white adipose tissue was either increased (Wistar rats) or unchanged (Lister rats).  相似文献   

19.
Fatty acid synthesis via the citrate cleavage pathway requires the continual replenishment of oxaloacetate within the mitochondria, probably by carboxylation of pyruvate. Malic enzyme, although present in adipose tissue, is completely localized in the cytoplasm and has insufficient activity to support lipogenesis. Pyruvate carboxylase was found to be active in both the mitochondria and cytoplasm of epididymal adipose tissue cells; it was dependent on both ATP and biotin. Alteractions in dietary conditions induced no significant changes in mitochondrial pyruvate carboxylase activity, but the soluble activity was depressed in fat-fed animals. The possible importance of the soluble activity in lipogenesis lies in its participation in a soluble malate transhydrogenation cycle with NAD malate dehydrogenase and malic enzyme, whereby a continual supply of NADPH is produced. Consequently, the pyruvate carboxylase in adipose tissue both generates mitochondrial oxaloacetate for the citrate cleavage pathway and supplies soluble NADPH for the conversion of acetyl-CoA to fatty acid.  相似文献   

20.
Soy protein rich in isoflavones profoundly affects lipid metabolism in experimental animals. To distinguish the roles of the protein and isoflavone components of a soy protein preparation in regulating lipid metabolism, we compared the effects of diets containing methanol-washed soy protein low in isoflavone supplemented with a 0-, 0.5- and 4-g/kg isoflavone preparation on hepatic fatty acid metabolism and adipose tissue gene expression in rats. Diets containing soy protein irrespective of the isoflavone levels decreased the activities and mRNA expression of enzymes involved in hepatic fatty acid synthesis to similar levels. Methanol-washed soy protein compared to casein increased the mRNA expression of peroxisome proliferator-activated receptor (PPAR) alpha, and supplementing the soy protein diet with isoflavone further increased this parameter dose-dependently. However, methanol-washed soy protein compared to casein was totally ineffective in altering the activities and mRNA levels of enzymes involved in fatty acid oxidation. Supplementation of soy protein diets with isoflavone slightly increased these parameters. The mRNA level of uncoupling protein (UCP) 1 in brown adipose tissue was significantly increased and mRNA levels of UCP2 and 3, and PPARgamma2 tended to be higher in rats fed methanol-washed soy protein not supplemented with isoflavone than in the animals fed casein. Adding isoflavone to the soy protein diets dose-dependently increased these parameters. These results suggested that the protein rather than isoflavone component is primarily responsible for the physiological activity of soy protein rich in isoflavones in reducing hepatic lipogenesis. However, isoflavones may have a role in regulating heptic fatty acid oxidation and adipose tissue gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号