共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence suggests that mood disorders are associated with a reduction in regional CNS volume and neuronal and glial cell atrophy or loss. Lithium, a mainstay in the treatment of mood disorders, has recently been demonstrated to robustly increase the levels of the cytoprotective B-cell lymphoma protein-2 (bcl-2) in areas of rodent brain and in cultured cells. In view of bcl-2's antiapoptotic and neurotrophic effects, the present study was undertaken to determine if lithium affects neurogenesis in the adult rodent hippocampus. Mice were chronically treated with lithium, and 5-bromo-2-deoxyuridine (BrdU) labeling of dividing cells was conducted over 12 days. Immunohistochemical analysis was undertaken 1 day after the last injection, and three-dimensional stereological cell counting revealed that lithium produced a significant 25% increase in the BrdU-labeled cells in the dentate gyrus. Double-labeling immunofluorescence studies were undertaken to co-localize BrdU-positive cells with neuron-specific nuclear protein and showed that approximately 65% of the cells were double-labeled. These results add to the growing body of evidence suggesting that mood stabilizers and antidepressants exert neurotrophic effects and may therefore be of use in the long-term treatment of other neuropsychiatric disorders. 相似文献
2.
Oestradiol application during embryonic development reverses the sex of male embryos and results in normal female differentiation in reptiles lacking heteromorphic sex chromosomes, but fails to do so in birds and mammals with heteromorphic sex chromosomes. It is not clear whether the evolution of heteromorphic sex chromosomes in amniotes is accompanied by insensitivity to oestradiol, or if the association between oestradiol insensitivity and heteromorphic sex chromosomes can be attributable to phylogenetic constraints in these taxa. Turtles provide an ideal system to examine the potential relationship between oestradiol insensitivity and sex chromosome heteromorphy, since there are species with heteromorphic sex chromosomes that are closely related to species lacking heteromorphic sex chromosomes. We investigated this relationship by examining the long-term effects of oestradiol-17beta application on sex determination in Staurotypus triporcatus and Staurotypus salvinii, two turtle species with male heterogamety. After raising the turtles in the lab for 3 years, we found follicular and Müllerian duct morphology in oestradiol-treated turtles that was identical to that of untreated females. The lasting sex reversal suggests that the evolutionary transition between systems lacking heteromorphic sex chromosomes and those with heteromorphic sex chromosomes is not constrained by a fundamental mechanistic difference. 相似文献
3.
The adult hippocampus is one of the primary neural structures involved in memory formation. In addition to synapse-specific modifications thought to encode information at the subcellular level, changes in the intrahippocampal neuro-populational activity and dynamics at the circuit-level may contribute substantively to the functional capacity of this region. Within the hippocampus, the dentate gyrus has the potential to make a preferential contribution to neural circuit modification owing to the continuous addition of new granule cell population. The integration of newborn neurons into pre-existing circuitry is hypothesized to deliver a unique processing capacity, as opposed to merely replacing dying granule cells. Recent studies have begun to assess the impact of hippocampal neurogenesis by examining the extent to which adult-born neurons participate in hippocampal networks, including when newborn neurons become engaged in ongoing network activity and how they modulate circuit dynamics via their unique intrinsic physiological properties. Understanding the contributions of adult neurogenesis to hippocampal function will provide new insight into the fundamental aspects of brain plasticity, which can be used to guide therapeutic interventions to replace neural populations damaged by disease or injury. 相似文献
4.
Alzheimer disease (AD) is a progressive, neurodegenerative disorder that leads to debilitating cognitive deficits. Although little is known about the early functional or ultrastructural changes associated with AD, it has been proposed that a stage of synaptic dysfunction might precede neurodegeneration in the development of this disease. Unfortunately, the molecular mechanisms that underlie such synaptic dysfunction remain largely unknown. Recently we have shown that beta-amyloid (Abeta), the main component of senile plaques, induced a significant decrease in dynamin 1, a protein that plays a critical role in synaptic vesicle recycling, and hence, in the signaling properties of the synapse. We report here that this dynamin 1 degradation was the result of calpain activation induced by the sustained calcium influx mediated by N-methyl-D-aspartate receptors in hippocampal neurons. In addition, our results showed that soluble oligomeric Abeta, and not fibrillar Abeta, was responsible for this sustained calcium influx, calpain activation, and dynamin 1 degradation. Considering the importance of dynamin 1 to synaptic function, these data suggest that Abeta soluble oligomers might catalyze a stage of synaptic dysfunction that precedes synapse loss and neurodegeneration. These data also highlight the calpain system as a novel therapeutic target for early stage AD intervention. 相似文献
5.
Cytoplasts were prepared from senescent human diploid fibroblasts. Brief treatments of the senescent cells with cycloheximide or puromycin prior to or after enucleation eliminated the ability of senescent cytoplasts to block initiation of DNA synthesis in senescent-young cybrids. Senescent cells treated with cycloheximide, enucleated and allowed to recover in complete medium without cycloheximide, regained the ability to block initiation of DNA synthesis in senescent-young cybrids. These results support the hypothesis that senescent cells synthesize an inhibitor of DNA synthesis which is either a protein(s) or its activity is mediated by a protein(s) found in the cytoplasm of the senescent cell. 相似文献
6.
Although cytolysis of invading organisms is an innate form of immunity used by invertebrates, so far the underlying mechanism remains less explored. The pupal hemolymph of the mosquito Armigeres subalbatus induces an activity that causes hemolysis of human red blood cells (HRBC). This hemolytic activity was inhibited by sialic acid (N-acetylneuraminic acid) and serine protease inhibitors. We purified the sialic acid-specific lectin(s) from the pupal hemolymph using formaldehyde-fixed HRBC and determined the sequence of the amino-terminal 19 amino acid residues. A polyclonal antibody produced against this N-terminal peptide clearly inhibited the hemolytic activity of the hemolymph in vitro, thus suggesting that the hemolysis of HRBC is caused by the lectin present in the mosquito hemolymph. We suggest that mosquitoes possess a cytolysis system. 相似文献
7.
Growing evidence indicates that neuroinflammation can alter adult neurogenesis by mechanisms as yet unclear. We have previously demonstrated that the neuroinflammatory response and neuronal damage after lipopolysaccharide (LPS) injection is reduced in cyclooxygenase-1 deficient (COX-1 -/-) mice. In this study, we investigated the role of CoX-1 on hippocampal neurogenesis during LPS-induced neuroinflammation, using COX-1 -/- and wild-type (WT) mice. We found that LPS-induced neuroinflammation resulted in the decrease of proliferation, survival and differentiation of hippocampal progenitor cells in WT but not in COX-1 -/- mice. Thus, we demonstrate for the first time that COX-1 is involved in the inhibition of BrdU progenitor cells in proliferation and hippocampal neurogenesis after LPS. These results suggest that COX-1 may represent a viable therapeutic target to reduce neuroinflammation and promote neurogenesis in neurodegenerative diseases with a strong inflammatory component.Key words: neurogenesis, cyclooxygenase-1, lipopolysaccharide, inflammation, brain 相似文献
8.
Growing evidence indicates that neuroinflammation can alter adult neurogenesis by mechanisms as yet unclear. We have previously demonstrated that the neuroinflammatory response and neuronal damage after lipopolysaccharide (LPS) injection is reduced in cyclooxygenase-1 deficient (COX-1-/-) mice. In this study, we investigated the role of COX-1 on hippocampal neurogenesis during LPS-induced neuroinflammation, using COX-1-/- and wild type (WT) mice. We found that LPS-induced neuroinflammation resulted in the decrease of proliferation, survival and differentiation of hippocampal progenitor cells in WT but not in COX-1-/- mice. Thus, we demonstrate for the first time that COX-1 is involved in the inhibition of BrdU progenitor cells in proliferation and hippocampal neurogenesis after LPS. These results suggest that COX-1 may represent a viable therapeutic target to reduce neuroinflammation and promote neurogenesis in neurodegenerative diseases with a strong inflammatory component. 相似文献
9.
Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyrus (DG) occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial. The present study was designed to investigate the impact of oxidative stress, treadmill exercise and sex on hippocampal neurogenesis in a murine model of heightened oxidative stress (G93A mice). G93A and wild type (WT) mice were randomized to a treadmill running (EX) or a sedentary (SED) group for 1 or 4 wk. Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) labeled proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress (3-NT; 8-OHdG). BDNF and IGF1 mRNA expression was assessed by in situ hybridization. Results showed that: (1) G93A-SED mice had greater hippocampal neurogenesis, BDNF mRNA, and 3-NT, as compared to WT-SED mice. (2) Treadmill running promoted hippocampal neurogenesis and BDNF mRNA content and lowered DNA oxidative damage (8-OHdG) in WT mice. (3) Male G93A mice showed significantly higher cell proliferation but a lower level of survival vs. female G93A mice. We conclude that G93A mice show higher hippocampal neurogenesis, in association with higher BDNF expression, yet running did not further enhance these phenomena in G93A mice, probably due to a 'ceiling effect' of an already heightened basal levels of hippocampal neurogenesis and BDNF expression. 相似文献
10.
In most moths, sex pheromone production is regulated by pheromone biosynthesis-activating neuropeptide (PBAN). How the extracellular PBAN signal is turned into a biological response has been the focus of numerous studies. In the classical scheme of signal transduction, activated G proteins relay the extracellular signal to downstream effector molecules such as calcium channels and adenylyl cyclase. The role of calcium in PBAN signaling has been clearly demonstrated, but the possible involvement of cAMP is not as straightforward. While cAMP has been shown to be necessary for PBAN signaling in most heliothine species, there has been no definitive demonstration of its role in Bombyx mori. To address this question, we used degenerate RT-PCR to clone two Gs subunits, designated P50Gs1 and P50Gs2, from B. mori pheromone gland (PG) cDNAs. The two Gs proteins were expressed in all tissues examined and were not up-regulated in accordance with adult eclosion. Even though two bands corresponding to the approximate molecular weights of P50Gs1 and P50Gs2 were detected in PG homogenates, the Gs antagonist, NF449, had no effect on sex pheromone production. Furthermore, no changes in the intracellular cAMP levels were detected following PBAN stimulation. 相似文献
11.
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS−/−) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS−/−). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation. 相似文献
12.
The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE) complex has been proposed to link Rho GTPase activity with actin polymerization but its role in neuronal plasticity has never been documented. We now examined the presence, distribution and dynamics of WAVE3 in cultured hippocampal neurons. WAVE3 was localized to dendritic spines via its N-terminal domain. Green fluorescent protein (GFP)-tagged WAVE3 clusters demonstrate an F-actin-dependent high rate of local motility. Constitutive Rac activation translocates WAVE3 (via the N-terminus), to the leading edge of lamellipodia. Also, spinogenesis is associated with actin-based motility of the WAVE3 protein. Brain specific WAVE1 showed similar localization and effects on spine density. Cytoplasmic fragile X mental retardation protein interacting protein (CYFIP) and non-catalytic region of tyrosine kinase adaptor protein 1 (NCK-1), proteins that are assumed to complex with WAVE, have a somewhat similar cellular distribution and motility. We propose that the WAVE complex is a downstream effector of the Rac signaling cascade, localized to sites of novel synaptic contacts by means of its N-terminal domain, to guide local actin polymerization needed for morphological plasticity of neurons. 相似文献
13.
We hypothesized that near-future elevated CO2 would affect the antipredatory behavior of two freshwater organisms; a pulmonate gastropod (Physella columbiana) and a cladoceran crustacean (Daphnia magna). Studies have found that pCO2 and increased acidification due to CO2 impedes fright responses to predators by activating GABAA receptors. After administration of predator-derived kairomones and conspecific alarm cues, we also briefly exposed some of the animals to gabazine which is a GABAA receptor antagonist to restore a fright response. We found that added carbon dioxide negatively affected the antipredatory behavior of both species but gabazine did not reverse this effect. To further examine the effect of CO2 and gabazine, we also tested the effect of stressful crowding, cold, and acidic conditions on the production of male daphnid offspring. An increase in ratio of male to female offspring is a common and expected response to stress by daphnids. We found that stress increased the production of males and gabazine reversed this at a pH of 5.5 but not at pH 6.2 or 6.5. Our study suggest that while the main negative effects of anthropogenic CO2 enrichment can be robust, the myriad indirect effects of CO2 make predictions about future predator prey systems less clear. 相似文献
14.
AbstractChanges in the intracellular and extracellular redox balance have been correlated with cell fate decisions in terms of proliferation versus differentiation, entering versus existing cell cycle and survival versus cell death. Adult hippocampal neurogenesis has been correlated with neuronal plasticity of learning and memory; however, the process is exquisitely sensitive to changes in redox balance. Cranial irradiation is an effective modality in treating brain tumours but often leads to deficits in hippocampus-related learning and memory, which is most likely due to sustained elevation of oxygen free radical production and suppression of hippocampal neurogenesis. The subcellular redox environment affecting hippocampal neurogenesis is largely unknown. Using mutant mice deficient in each one of the three superoxide dismutase (SOD, EC 1.15.1.1) isoforms, we have begun to determine the consequences of SOD deficiency in hippocampal neurogenesis and the related functions of learning and memory under normal condition and following cranial irradiation. 相似文献
15.
Changes in the intracellular and extracellular redox balance have been correlated with cell fate decisions in terms of proliferation versus differentiation, entering versus existing cell cycle and survival versus cell death. Adult hippocampal neurogenesis has been correlated with neuronal plasticity of learning and memory; however, the process is exquisitely sensitive to changes in redox balance. Cranial irradiation is an effective modality in treating brain tumours but often leads to deficits in hippocampus-related learning and memory, which is most likely due to sustained elevation of oxygen free radical production and suppression of hippocampal neurogenesis. The subcellular redox environment affecting hippocampal neurogenesis is largely unknown. Using mutant mice deficient in each one of the three superoxide dismutase (SOD, EC 1.15.1.1) isoforms, we have begun to determine the consequences of SOD deficiency in hippocampal neurogenesis and the related functions of learning and memory under normal condition and following cranial irradiation. 相似文献
16.
To elucidate the influence of gonadotropins, endogenous sex hormones and testosterone on atherosclerosis, 4-week-old male and female apoE-deficient mice received either 100 microg subcutaneous injections of the gonadotropin-releasing hormone (GnRH) antagonist Cetrorelix every 48 hours or a subcutaneous implantation of a permeable silastic tube with 35 mg of testosterone. Control mice received either subcutaneous injections of saline, a silastic implant with saline, or no treatment. The animals were sacrificed after eight weeks of treatment; blood was obtained by cardiac puncture and the aorta was taken out and prepared. The suppression of testosterone led to an increase in atherosclerosis in both the sinus aortae and the ascending aorta despite increases of cholesterol in male and decreases of HDL cholesterol in female mice. Treatment with testosterone led to small but significant increases of cholesterol levels and atherosclerotic lesions in male mice. Female mice showed no change in lipids and fewer atherosclerotic lesions. In conclusion, the suppression of gonadotropins appears to have a moderate anti-atherogenic effect. The effect of testosterone appears to be either neutral or opposed by gonadotropins. 相似文献
17.
The murine Ly-6A.2 and Ly-6E.1 antigens, which can transduce triggering signals in T cells, have been shown to become highly expressed after mitogenic stimulation. It has recently been found that enhanced expression of Ly-6A/E antigens is also induced by interferon-gamma (IFN-gamma) in resting T cells. Here, the possibility is investigated that Ly-6A/E induction on activated T cells may be due to the IFN-gamma known to be secreted by these cells. A potent neutralizing anti-IFN-gamma monoclonal antibody (mAb) (H-22.10) was used. This mAb was found to abrogate the augmentation of Ly-6A/E antigens produced in resting T cells by supernatants from T cells stimulated with concanavalin A. When added directly into cultures of T cells stimulated with concanavalin A or by the combination of ionomycin with the protein kinase C activator phorbol myristate acetate (PMA), the H-22.10 mAb inhibited Ly-6A/E enhancement without affecting the blastogenesis or the emergence of interleukin 2 receptors and transferrin receptors. Such a selective effect of the anti-IFN-gamma mAb indicated that IFN-gamma is involved in the up-regulation of Ly-6A/E antigens during T cell activation. In determining whether other activation signals, in addition to IFN-gamma receptor occupancy, may contribute to Ly-6A/E enhancement, it was found that suboptimal stimulation of BALB/c T cells provided by a 3-hr pulse with ionomycin plus PMA or by culture with PMA alone potentiated by about twofold the increase of Ly-6E.1 induced by exogenous IFN-gamma. Therefore, Ly-6A/E augmentation in activated T cells reflects primarily an action of endogenous IFN-gamma that is amplified (in BALB/c mice) by a protein kinase C-dependent step. 相似文献
18.
GLUT8 is a glucose transporter isoform expressed at high levels in testis; at intermediate levels in the brain, including the hippocampus; and at lower levels in the heart and several other tissues. GLUT8 is located in an intracellular compartment and does not appear to translocate to the cell surface, except in blastocysts, where insulin has been reported to induce its surface expression. Here, we generated mice with inactivation of the glut8 gene. We showed that expression of GLUT8 was not required for normal embryonic development and that glut8-/- mice had normal postnatal development, glucose homeostasis, and response to mild stress. Adult glut8-/- mice showed increased proliferation of hippocampal cells but no defect in memory acquisition and retention. Absence of GLUT8 from the heart did not alter heart size and morphology but led to an increase in P-wave duration, which was not associated with abnormal Nav1.5 Na+ channel or connexin expression. Thus, absence of GLUT8 expression in the mouse caused complex but mild physiological alterations. 相似文献
19.
Activated murine peritoneal macrophages inhibit the intracellular proliferation of Toxoplasma gondii and produce a number of cytokines, such as TNF-alpha and IL-1. Both TNF-alpha and IL-1 have been reported to be involved in the immune response against various microorganisms, but the mechanisms responsible for these effects are not known. In the present study it was investigated whether endogenously produced TNF-alpha and IL-1 are involved in the activation of peritoneal macrophages by rIFN-gamma leading to toxoplasmastatic activity and the production of reactive nitrogen intermediates. The rIFN-gamma-induced toxoplasmastatic activity was inhibited by neutralizing antibodies against mouse TNF-alpha in a dose-dependent and time-dependent way, but neutralizing antibodies against mouse IL-1 alpha and IL-1 beta did not affect this activity. Involvement of TNF-alpha in the induction of toxoplasmastatic activity was confirmed by our finding that rTNF-alpha in combination with a nonactivating concentration of rIFN-gamma inhibited the intracellular proliferation of T. gondii. No synergistic activity of rIL-1 and rIFN-gamma on the inhibition of T. gondii proliferation was found. Both rTNF-alpha and rIL-1 alpha alone inhibited the intracellular proliferation of T. gondii only slightly. Because it has been reported recently that activated macrophages produce reactive nitrogen intermediates that are essential in the induction of toxoplasmastatic activity, we investigated whether these intermediates are involved in the TNF-dependent induction of toxoplasmastatic activity. Neutralizing antibodies against mouse TNF-alpha inhibited also the release of NO2- by rIFN-gamma-activated macrophages almost completely. Macrophages incubated with rTNF-alpha in combination with a nonactivating concentration of rIFN-gamma released substantial amounts of NO2-, but rTNF-alpha and rIL-1 alpha alone, and the combination of rIL-1 alpha and a nonactivating concentration of rIFN-gamma induced only little NO2(-)-release by macrophages. To assess whether reactive nitrogen intermediates act directly or indirectly on the intracellular proliferation of T. gondii, macrophages were incubated with the L-arginine analog NG-monomethyl-L-arginine or the NADPH-inhibitor diphenylene iodonium, both inhibitors of the generation of reactive nitrogen intermediates. Good correlation was found between toxoplasmastatic activity and the release of NO2- during the 24-h activation period before infection of the macrophages with T. gondii, but no correlation was found between toxoplasmastatic activity and the release of NO2- during infection of the macrophages.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
|