首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two component high affinity nitrate transport system, NAR2/NRT2, has been defined in several plant species. In Arabidopsis, AtNAR2.1 has a role in the targeting of AtNRT2.1 to the plasma membrane. The gene knock out mutant atnar2.1 lacks inducible high-affinity transport system (IHATS) activity, it also shows the same inhibition of lateral root (LR) initiation on the newly developed primary roots as the atnrt2.1 mutant in response to low nitrate supply. In rice, OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a to provide nitrate uptake over high and low concentration ranges. In rice roots OsNAR2.1 and its partner NRT2s show some expression differences in both tissue specificity and abundance. It can be predicted that NAR2 plays multiple roles in addition to being an IHATS component in plants.Key words: NAR2, NRT2, nitrate transporter, root  相似文献   

3.

Nitrogen uptake by plants is a key step for efficient nitrogen use, which affects plant growth and yield. Arabidopsis thaliana gene NRT1.1 was identified as a transporter related to nitrate (NO3) signaling and uptake. In rice, three orthologs of NRT1.1, named OsNRT1.1A, OsNRT1.1B, and OsNRT1.1C, have been identified. This study evaluated the potential of OsNRT1.1A, OsNRT1.1B, and OsNRT1.1C in NO3 signaling and uptake through overexpression in the Arabidopsis chl1-5 mutant. The expression of OsNRT1.1A, OsNRT1.1B, and OsNRT1.1C was evaluated in the roots and shoots of rice cultivated with NO3 or NH4+. OsNRT1.1A was expressed in the roots and shoots cultivated with NO3 and NH4+. OsNRT1.1B was expressed predominantly in roots of rice cultivated with NO3, while the expression of OsNRT1.1C was low in roots and shoots. Arabidopsis chl1-5 plants were transformed by the floral dip method using Agrobacterium tumefaciens to overexpress OsNRT1.1A and the alternative splicing product named OsNRT1.1As, OsNRT1.1B, and OsNRT1.1C. The chlorate test showed the ability of OsNRT1.1A, OsNRT1.1B or OsNRT1.1C to take up chlorate, as evidenced by the decrease in fresh weight. The OsNRT1.1B lineages presented higher toxicity to chlorate. Gene expression analyses showed that the insertion of OsNRT1.1A and OsNRT1.1B into Arabidopsis chl1-5 induced the expression of NRT2.1 and NAR2.1. OsNRT1.1As overexpression did not significantly affect the expression of NRT2.1 and NAR2.1. The results show the differential ability of NRT1.1 orthologs in rice to take up chlorate and signal the expression of other nitrate transporters, which may affect the efficiency of nitrogen utilization and its uptake.

  相似文献   

4.
Rice has a preference for uptake of ammonium over nitrate and can use ammonium-N efficiently. Consequently, transporters mediating ammonium uptake have been extensively studied, but nitrate transporters have been largely ignored. Recently,some reports have shown that rice also has high capacity to acquire nitrate from growth medium, so understanding the nitrate transport system in rice roots is very important for improving N use efficiency in rice. The present study identified four putative NRT2 and two putative NAR2 genes that encode components of the high-affinity nitrate transport system (HATS) in the rice (Oryza sativa L. subsp, japonica cv. Nipponbare) genome. OsNRT2.1 and OsNRT2.2 share an identical coding region sequence, and their deduced proteins are closely related to those from monocotyledonous plants. The two NAR2 proteins are closely related to those from mono-cotyledonous plants as well. However, OsNRT2.3 and OsNRT2.4 are more closely related to Arabidopsis NRT2 proteins. Relative quantitative reverse tranecdption-polymerase chain reaction analysis showed that all of the six genes were rapidly upregulated and then downregulated in the roots of N-starved rice plants after they were re-supplied with 0.2 mM nitrate, but the response to nitrate differed among gene members.The results from phylogenetic tree, gene structure and expression analysis implied the divergent roles for the individual members of the rice NRT2 and NAR2 families. High-affinity nitrate influx rates associated with nitrate induction in rice roots were investigated and were found to be regulated by external pH. Compared with the nitrate influx rates at pH 6.5, alkaline pH (pH 8.0) inhibited nitrate Influx, and acidic pH (pH 5.0) enhanced the nitrate influx In I h nitrate induced roots, but did not significantly affect that in 4 to 8 h nitrate induced roots.  相似文献   

5.
The importance of the nitrate () transporter for yield and nitrogen‐use efficiency (NUE) in rice was previously demonstrated using map‐based cloning. In this study, we enhanced the expression of the OsNRT2.1 gene, which encodes a high‐affinity transporter, using a ubiquitin (Ubi) promoter and the ‐inducible promoter of the OsNAR2.1 gene to drive OsNRT2.1 expression in transgenic rice plants. Transgenic lines expressing pUbi:OsNRT2.1 or pOsNAR2.1:OsNRT2.1 constructs exhibited the increased total biomass including yields of approximately 21% and 38% compared with wild‐type (WT) plants. The agricultural NUE (ANUE) of the pUbi:OsNRT2.1 lines decreased to 83% of that of the WT plants, while the ANUE of the pOsNAR2.1:OsNRT2.1 lines increased to 128% of that of the WT plants. The dry matter transfer into grain decreased by 68% in the pUbi:OsNRT2.1 lines and increased by 46% in the pOsNAR2.1:OsNRT2.1 lines relative to the WT. The expression of OsNRT2.1 in shoot and grain showed that Ubi enhanced OsNRT2.1 expression by 7.5‐fold averagely and OsNAR2.1 promoters increased by about 80% higher than the WT. Interestingly, we found that the OsNAR2.1 was expressed higher in all the organs of pUbi:OsNRT2.1 lines; however, for pOsNAR2.1:OsNRT2.1 lines, OsNAR2.1 expression was only increased in root, leaf sheaths and internodes. We show that increased expression of OsNRT2.1, especially driven by OsNAR2.1 promoter, can improve the yield and NUE in rice.  相似文献   

6.
Nitrate uptake by rice coleoptiles was evaluated using 15N-nitrate in relation to the expression of high-affinity nitrate uptake-related genes, OsNRT2s (OsNRT2.12.4) and OsNAR2s (OsNAR2.1 and 2.2). Apparent nitrate uptake by coleoptiles was about one-sixth of that by hydroponically cultured seedling roots. Real-time RT-PCR analysis revealed that OsNRT2.1, a root-specific key gene of inducible high-affinity transport system for nitrate, was most strongly induced in coleoptiles following nitrate supply initiation, while other OsNRT2s and OsNAR2s showed modest induction. These results suggest that rice coleoptiles may have high-affinity transport systems for nitrate similar to roots, and can be model organs for nutrient uptake by submerged plant shoots.  相似文献   

7.
The nitrate () transporter has been selected as an important gene maker in the process of environmental adoption in rice cultivars. In this work, we transferred another native OsNAR2.1 promoter with driving OsNAR2.1 gene into rice plants. The transgenic lines with exogenous pOsNAR2.1:OsNAR2.1 constructs showed enhanced OsNAR2.1 expression level, compared with wild type (WT), and 15N influx in roots increased 21%–32% in response to 0.2 mm and 2.5 mm and 1.25 mm 15NH415NO3. Under these three N conditions, the biomass of the pOsNAR2.1:OsNAR2.1 transgenic lines increased 143%, 129% and 51%, and total N content increased 161%, 242% and 69%, respectively, compared to WT. Furthermore in field experiments we found the grain yield, agricultural nitrogen use efficiency (ANUE), and dry matter transfer of pOsNAR2.1:OsNAR2.1 plants increased by about 21%, 22% and 21%, compared to WT. We also compared the phenotypes of pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines in the field, found that postanthesis N uptake differed significantly between them, and in comparison with the WT. Postanthesis N uptake (PANU) increased approximately 39% and 85%, in the pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines, respectively, possibly because OsNRT2.1 expression was less in the pOsNAR2.1:OsNAR2.1 lines than in the pOsNAR2.1:OsNRT2.1 lines during the late growth stage. These results show that rice NO3 uptake, yield and NUE were improved by increased OsNAR2.1 expression via its native promoter.  相似文献   

8.
9.
10.
Lin CM  Koh S  Stacey G  Yu SM  Lin TY  Tsay YF 《Plant physiology》2000,122(2):379-388
Elucidating how rice (Oryza sativa) takes up nitrate at the molecular level could help improve the low recovery rate (<50%) of nitrogen fertilizer in rice paddies. As a first step toward that goal, we have cloned a nitrate transporter gene from rice called OsNRT1. OsNRT1 is a new member of a growing transporter family called PTR, which consists not only of nitrate transporters from higher plants that are homologs of the Arabidopsis CHL1 (AtNRT1) protein, but also peptide transporters from a wide variety of genera including animals, plants, fungi, and bacteria. However, despite the fact that OsNRT1 shares a higher degree of sequence identity with the two peptide transporters from plants (approximately 50%) than with the nitrate transporters (approximately 40%) of the PTR family, no peptide transport activity was observed when OsNRT1 was expressed in either Xenopus oocytes or yeast. Furthermore, contrasting the dual-affinity nitrate transport activity of CHL1, OsNRT1 displayed only low-affinity nitrate transport activity in Xenopus oocytes, with a K(m) value of approximately 9 mM. Northern-blot and in situ hybridization analysis indicated that OsNRT1 is constitutively expressed in the most external layer of the root, epidermis and root hair. These data strongly indicate that OsNRT1 encodes a constitutive component of a low-affinity nitrate uptake system for rice.  相似文献   

11.
12.
Nitrate transporters received little attention to legumes probably because these species are able to adapt to N starvation by developing biological N2 fixation. Still it is important to study nitrate transport systems in legumes because nitrate intervenes as a signal in regulation of nodulation probably through nitrate transporters. The aim of this work is to achieve a molecular characterization of nitrate transporter 2 (NRT2) and NAR2 (NRT3) families to allow further work that would unravel their involvement in nitrate transport and signaling. Browsing the latest version of the Medicago truncatula genome annotation (v4 version) revealed three putative NRT2 members that we have named MtNRT2.1 (Medtr4g057890.1), MtNRT2.2 (Medtr4g057865.1) and MtNRT2.3 (Medtr8g069775.1) and two putative NAR2 members we named MtNAR2.1 (Medtr4g104730.1) and MtNAR2.2 (Medtr4g104700.1). The regulation and the spatial expression profiles of MtNRT2.1, the coincidence of its expression with that of MtNAR2.1 and MtNAR2.2 and the size of the encoded protein with 12 transmembrane (TM) spanning regions strongly support the idea that MtNRT2.1 is a nitrate transporter with a major contribution to the high‐affinity transport system (HATS), while a very low level of expression characterized MtNRT2.2. Unlike MtNRT2.1, MtNRT2.3 showed a lower level of expression in the root system but was expressed in the shoots and in the nodules thus suggesting an involvement of the encoded protein in nitrate transport inside the plant and/or in nitrate signaling pathways controlling post‐inoculation processes that govern nodule functioning.  相似文献   

13.
Drought is one of the most significant abiotic stresses that influence plant growth anddevelopment.Expression analysis revealed that OsNRT1.3,a putative nitrate transporter gene in rice,wasinduced by drought.To confirm if the OsNRT1.3 promoter can respond to drought stress,a 2019 bpupstream sequence of OsNRT1.3 was cloned.Three OsNRT1.3 promoter fragments were generated by5′-deletion,and fused to the β-glucuronidase (GUS) gene.The chimeric genes were introduced into riceplants.NRT2019::GUS,NRT1196::GUS and NRT719::GUS showed similar expression patterns in seeds,roots,leaves and flowers in all transgenic rice,and GUS activity conferred by different OsNRT1.3 promoterfragments was significantly upregulated by drought stress,indicating that OsNRT1.3 promoter responds todrought stress and the 719 bp upstream sequence of OsNRT1.3 contains the drought response elements.  相似文献   

14.
In Arabidopsis the NRT2.1 gene encodes a main component of the root high-affinity nitrate uptake system (HATS). Its regulation has been thoroughly studied showing a strong correlation between NRT2.1 expression and HATS activity. Despite its central role in plant nutrition, nothing is known concerning localization and regulation of NRT2.1 at the protein level. By combining a green fluorescent protein fusion strategy and an immunological approach, we show that NRT2.1 is mainly localized in the plasma membrane of root cortical and epidermal cells, and that several forms of the protein seems to co-exist in cell membranes (the monomer and at least one higher molecular weight complex). The monomer is the most abundant form of NRT2.1, and seems to be the one involved in NO(3)(-) transport. It strictly requires the NAR2.1 protein to be expressed and addressed at the plasma membrane. No rapid changes in NRT2.1 abundance were observed in response to light, sucrose, or nitrogen treatments that strongly affect both NRT2.1 mRNA level and HATS activity. This suggests the occurrence of post-translational regulatory mechanisms. One such mechanism could correspond to the cleavage of NRT2.1 C terminus, which results in the presence of both intact and truncated proteins in the plasma membrane.  相似文献   

15.
OsNRT1.1a is a low-affinity nitrate(NO_3~-) transporter gene. In this study, another mRNA splicing product, OsNRT1.1b,putatively encoding a protein with six transmembrane domains, was identified based on the rice genomic database and bioinformatics analysis. OsNRT1.1a/OsNRT1.1b expression in Xenopus oocytes showed OsNRT1.1a-expressing oocytes accumulated ~(15)N levels to about half as compared to OsNRT1.1bexpressing oocytes. The electrophysiological recording of OsNRT1.1b-expressing oocytes treated with 0.25 mM NO_3~- confirmed ~(15)N accumulation data. More functional assays were performed to examine the function of OsNRT1.1b in rice. The expression of both OsNRT1.1a and OsNRT1.1b was abundant in roots and downregulated by nitrogen(N) deficiency. The shoot biomass of transgenic rice plants with OsNRT1.1a or OsNRT1.1b overexpression increased under various N supplies under hydroponic conditions compared to wild-type(WT). The OsNRT1.1a overexpression lines showed increased plant N accumulation compared to the WT in 1.25 mM NH_4NO_3 and 2.5 mM NO_3~- or NH_4~+ treatments, but not in 0.125 mM NH_4NO_3.However, OsNRT1.1b overexpression lines increased total N accumulation in all N treatments, including 0.125 m M NH_4NO_3,suggesting that under low N condition, OsNRT1.1b would accumulate more N in plants and improve rice growth, but also that OsNRT1.1a had no such function in rice plants.  相似文献   

16.
? Interactions between the Arabidopsis NitRate Transporter (AtNRT2.1) and Nitrate Assimilation Related protein (AtNAR2.1, also known as AtNRT3.1) have been well documented, and confirmed by the demonstration that AtNRT2.1 and AtNAR2.1 form a 150-kDa plasma membrane complex, thought to constitute the high-affinity nitrate transporter of Arabidopsis thaliana roots. Here, we have investigated interactions between the remaining AtNRT2 family members (AtNRT2.2 to AtNRT2.7) and AtNAR2.1, and their capacity for nitrate transport. ? Three different systems were used to examine possible interactions with AtNAR2.1: membrane yeast split-ubiquitin, bimolecular fluorescence complementation in A. thaliana protoplasts and nitrate uptake in Xenopus oocytes. ? All NRT2s, except for AtNRT2.7, restored growth and β-galactosidase activity in the yeast split-ubiquitin system, and split-YFP fluorescence in A. thaliana protoplasts only when co-expressed with AtNAR2.1. Thus, except for AtNRT2.7, all other NRT2 transporters interact strongly with AtNAR2.1. ? Co-injection into Xenopus oocytes of cRNA of all NRT2 genes together with cRNA of AtNAR2.1 resulted in statistically significant increases of uptake over and above that resulting from single cRNA injections.  相似文献   

17.
Nitrogen (N) is a limiting nutrient for plant growth and productivity. The phytohormone abscisic acid (ABA) has been suggested to play a vital role in nitrate uptake in fluctuating N environments. However, the molecular mechanisms underlying the involvement of ABA in N deficiency responses are largely unknown. In this study, we demonstrated that ABA signaling components, particularly the three subclass III SUCROSE NON‐FERMENTING1 (SNF1)‐RELATED PROTEIN KINASE 2S (SnRK2) proteins, function in root foraging and uptake of nitrate under N deficiency in Arabidopsis thaliana. The snrk2.2snrk2.3snrk2.6 triple mutant grew a longer primary root and had a higher rate of nitrate influx and accumulation compared with wild‐type plants under nitrate deficiency. Strikingly, SnRK2.2/2.3/2.6 proteins interacted with and phosphorylated the nitrate transceptor NITRATE TRANSPORTER1.1 (NRT1.1) in vitro and in vivo. The phosphorylation of NRT1.1 by SnRK2s resulted in a significant decrease of nitrate uptake and impairment of root growth. Moreover, we identified NRT1.1Ser585 as a previously unknown functional site: the phosphomimetic NRT1.1S585D was impaired in both low‐ and high‐affinity transport activities. Taken together, our findings provide new insight into how plants fine‐tune growth via ABA signaling under N deficiency.  相似文献   

18.
19.
Nitrate is a major nitrogen (N) source for most crops. Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels. Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency. The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots. Wheat seedlings grown in nutrient solution containing 2 mmol/L nitrate as the only nitrogen source for 2weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h. Treated wheat plants were then divided into two groups. One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L ^15N-labeled nitrate. The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate. Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction. When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced. These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media. Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号