首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to evaluate the scavenging activity for reactive oxygen species (ROS) and reactive nitrogen species (RNS) by several nonsteroidal anti-inflammatory drugs (NSAIDs), namely indole derivatives (indomethacin, acemetacin, etodolac), pyrrole derivatives (tolmetin and ketorolac), and an oxazole derivative (oxaprozin). The inhibition of prostaglandin synthesis constitutes the primary mechanism of the anti-inflammatory action of these drugs. Nevertheless, it has been suggested that the anti-inflammatory activity of NSAIDs may be also partly due to their ability to scavenge ROS and RNS and to inhibit the respiratory burst of neutrophils triggered by various activator agents. Thus, the scavenging activity of these NSAIDs was evaluated against an array of ROS (O(2)(-), HO, HOCl, and ROO) and RNS (NO and ONOO(-)) using noncellular in vitro systems. The results obtained demonstrated that tolmetin, ketorolac, and oxaprozin were not active against O(2)(-), while acemetacin, indomethacin, and etodolac exhibited concentration-dependent effects. Oxaprozin was also the least active scavenger for HO, among all the tested NSAIDs shown to be active. The scavenging effect for HOCl was not observed for any of the tested NSAIDs. The ROO was effectively scavenged by etodolac, with the other tested NSAIDs being much less active. NO and ONOO(-) were scavenged by all the tested NSAIDs. These effects may strongly contribute to the anti-inflammatory therapy benefits that may be attained with some of the studied NSAIDs.  相似文献   

2.
The therapeutic effects of beta-blockers are normally explained by their capacity to block the beta-adrenoceptors, however, some of the beneficial cardiovascular effects shown by this group of compounds have already been associated with the antioxidant properties that some of them seem to possess. The beta-blockers atenolol, labetalol, metoprolol, pindolol, propranolol, sotalol, timolol, and carvedilol were tested for their putative scavenging activity for ROS (O(2)(-), H(2)O(2), HO(.), HOCl, and ROO(.)) and RNS ((.)NO and ONOO(-)). Some of the studied compounds are effective ROS and/or RNS scavengers, these effects being possibly useful in preventing oxidative damage verified in hypertension as well as in other cardiovascular diseases that frequently emerge in association with oxidative stress.  相似文献   

3.
Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.  相似文献   

4.
Sulindac is a sulfoxide prodrug that, in vivo, is converted to the metabolites sulindac sulfide and sulindac sulfone. It is therapeutically used as an anti-inflammatory and analgesic in the symptomatic treatment of acute and chronic rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis. In addition to its anti-inflammatory properties, sulindac and its metabolites have been shown to have an important role in the prevention of colonic carcinogenesis. Although the inhibition of prostaglandin synthesis constitutes the primary mechanism of action of sulindac, it is well known that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are implicated in the pathophysiology of inflammation and cancer. Thus, the aim of this study was to evaluate the scavenging activity of sulindac and its sulfone and sulfide metabolites for an array of ROS (HO*, O2(*-), and HOCl) and RNS (*NO and ONOO-) using in vitro systems. The results we obtained demonstrate that the metabolism of sulindac increases its scavenging activity for all RNS and ROS studied, notably with regard to the scavenging of HOCl. These effects may strongly contribute to the anti-inflammatory and anticarcinogenic efficacy that has been shown for sulindac.  相似文献   

5.
Reactions of sulfasalazine (SAZ) and its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), with various oxidizing and reducing free radicals (hydroxyl, haloperoxyl, one-electron oxidizing, lipid peroxyl, glutathiyl, superoxide, tryptophanyl, etc.) have been studied to understand the mechanistic aspects of its action against free radicals produced during inflammation. Nanosecond pulse radiolysis technique coupled with transient spectrophotometry has been used for in situ generation of free radicals and to follow their reaction pathways. The transients produced in these reactions have been assigned and radical scavenging rate constants have been measured. In addition to scavenging of various primary and secondary free radicals by SAZ, 5-ASA and SP, 5-ASA has also been observed to efficiently scavenge radicals of biomolecules. 5-ASA has been found to be the active moiety of SAZ involved in the scavenging of oxidizing free radicals whereas reduction of SAZ produced molecular radical anion. The study suggests that free radical scavenging activity of 5-ASA may be a major path of pharmacological action of SAZ against inflammatory bowel diseases (IBD).  相似文献   

6.
Pedilanthus tithymaloides (L.) Poit. (Euphorbiaceae) is a low tropical American shrub with a reported wide range of healing properties such as emetic, anti-inflammatory, antibiotic, antiseptic, antihemorrhagic, antiviral, antitumoral, and abortive. In the present study, a tincture from P. tithymaloides collected in Cuba was evaluated for its in vivo anti-inflammatory activity, using the rat paw oedema assay, and for its in vitro scavenging effects on reactive oxygen species (ROS) (HO*, O2*-, HOCl, ROO* and H2O2), reactive nitrogen species (RNS) (ONOO- and *NO), and DPPH* radical. The protein, free amino acid, and phenolic contents of the tincture were also determined. Pertaining to the anti-inflammatory activity, the intraperitoneal administration of the tincture inhibited carrageenan-induced rat paw oedema, whereas in the scavenging assays the tincture showed to be effective against all the assayed ROS and RNS, specially for HO* (IC50 = 345+/-77 microg/mL), O2*- (IC50 = 143+/-7 microg/mL), HOCl (IC50 = 113+/-20 microg/mL), ONOO- (IC50 = 44+/-3 microg/mL), and *NO (IC50 = 54+/-4 microg/mL), but displayed weak activity in the DPPH* assay. The protein content of the tincture was 0.70%, and twenty free amino acids were identified and quantified. The content of total phenolics was 17.4+/-0.15 mg of gallic acid equivalents (GAE)/g dry material. These results provide scientific support for the empirical use of P. tithymaloides tincture as an anti-inflammatory medicine.  相似文献   

7.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

8.
Ulcerative colitis (UC) is a recurrent inflammation of the colon and rectum that is characterized by subepithelial hemorrhage, epithelial cell necrosis, infiltration of large numbers of phagocytic leukocytes (neutrophils, eosinophils, macrophages), and mucosal ulcerations. Recent evidence suggests that mucosal lipid peroxidation may play an important role in that pathogenesis of the inflammation-induced intestinal injury. Using hemoglobin (Hb)-catalyzed, H2O2-dependent peroxidation of phospholipid as a model of oxidative injury to membrane lipids, we assessed the ability of the anti-inflammatory drugs sulfasalazine (SAZ), olsalazine, and their metabolites, 5-aminosalicylic acid (5-ASA), N-acetyl-5-ASA, and sulfapyridine (SP) to inhibit this reaction. We found that Hb interacted with H2O2 to yield the radical and nonradical forms of ferryl Hb (Hb(V)) which were capable of initiating the peroxidation of a phospholipid. This interaction did not result in the peroxide-dependent release of iron from the hemoprotein. In addition, we demonstrated that the pharmacologically active moiety of SAZ (or olsalazine), 5-ASA, was significantly better at inhibiting the Hb-catalyzed peroxidative reaction. The concentration of 5-ASA required to inhibit lipid peroxidation by 50% (IC50) was determined to be 50 microM. Neither parent compound (SAZ, olsalazine) nor the pharmacologically inactive metabolite (SP) were effective in attenuating the lipid peroxidation at concentrations up to 100 microM. The N-acetylated derivative of 5-ASA was less effective as an inhibitor in this system possessing an IC50 of 100 microM. The mechanism by which 5-ASA inhibited lipid peroxidation appeared to be due to its ability to donate electrons to and thus scavenge the radical and nonradical forms of HB(IV).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Melatonin is a potent endogenous free radical scavenger, actions that are independent of its many receptor-mediated effects. In the last several years, hundreds of publications have confirmed that melatonin is a broad-spectrum antioxidant. Melatonin has been reported to scavenge hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO(.)), nitric oxide (NO(.)), peroxynitrite anion (ONOO(-)), hypochlorous acid (HOCl), singlet oxygen ((1)O(2)), superoxide anion (O(2)(-).) and peroxyl radical (LOO(.)), although the validity of its ability to scavenge O(2)(-). and LOO(.) is debatable. Regardless of the radicals scavenged, melatonin prevents oxidative damage at the level of cells, tissues, organs and organisms. The antioxidative mechanisms of melatonin seem different from classical antioxidants such as vitamin C, vitamin E and glutathione. As electron donors, classical antioxidants undergo redox cycling; thus, they have the potential to promote oxidation as well as prevent it. Melatonin, as an electron-rich molecule, may interact with free radicals via an additive reaction to form several stable end-products which are excreted in the urine. Melatonin does not undergo redox cycling and, thus, does not promote oxidation as shown under a variety of experimental conditions. From this point of view, melatonin can be considered a suicidal or terminal antioxidant which distinguishes it from the opportunistic antioxidants. Interestingly, the ability of melatonin to scavenge free radicals is not in a ratio of mole to mole. Indeed, one melatonin molecule scavenges two HO. Also, its secondary and tertiary metabolites, for example, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, N-acetyl-5-methoxykynuramine and 6-hydroxymelatonin, which are believed to be generated when melatonin interacts with free radicals, are also regarded as effective free radical scavengers. The continuous free radical scavenging potential of the original molecule (melatonin) and its metabolites may be defined as a scavenging cascade reaction. Melatonin also synergizes with vitamin C, vitamin E and glutathione in the scavenging of free radicals. Melatonin has been detected in vegetables, fruits and a variety of herbs. In some plants, especially in flowers and seeds (the reproductive organs which are most vulnerable to oxidative insults), melatonin concentrations are several orders of magnitude higher than measured in the blood of vertebrates. Melatonin in plants not only provides an alternative exogenous source of melatonin for herbivores but also suggests that melatonin may be an important antioxidant in plants which protects them from a hostile environment that includes extreme heat, cold and pollution, all of which generate free radicals.  相似文献   

10.
Airway epithelial cells are constantly exposed to environmental insults such as air pollution or tobacco smoke that may contain high levels of reactive nitrogen and reactive oxygen species. Previous work from our laboratory demonstrated that the reactive oxygen species (ROS), hydrogen peroxide (H(2)O(2)), specifically activates neutral sphingomyelinase 2 (nSMase2) to generate ceramide and induce apoptosis in airway epithelial cells. In the current study we examine the biological consequence of exposure of human airway epithelial (HAE) cells to reactive nitrogen species (RNS). Similar to ROS, we hypothesized that RNS may modulate ceramide levels in HAE cells and induce apoptosis. We found that nitric oxide (NO) exposure via the NO donor papa-NONOate, failed to induce apoptosis in HAE cells. However, when papa-NONOate was combined with a superoxide anion donor (DMNQ) to generate peroxynitrite (ONOO(-)), apoptosis was observed. Similarly pure ONOO(-)-induced apoptosis, and ONOO(-)-induced apoptosis was associated with an increase in cellular ceramide levels. Pretreatment with the antioxidant glutathione did not prevent ONOO(-)-induced apoptosis, but did prevent H(2)O(2)-induced apoptosis. Analysis of the ceramide generating enzymes revealed a differential response by the oxidants. We confirmed our findings that H(2)O(2) specifically activated a neutral sphingomyelinase (nSMase2). However, ONOO(-) exposure did not affect neutral sphingomyelinase activity; rather, ONOO(-) specifically activated an acidic sphingomyelinase (aSMase). The specificity of each enzyme was confirmed using siRNA to knockdown both nSMase2 and aSMase. Silencing nSMase2 prevented H(2)O(2)-induced apoptosis, but had no effect on ONOO(-)-induced apoptosis. On the other hand, silencing of aSMase markedly impaired ONOO(-)-induced apoptosis, but did not affect H(2)O(2)-induced apoptosis. These findings support our hypothesis that ROS and RNS modulate ceramide levels to induce apoptosis in HAE cells. However, we found that different oxidants modulate different enzymes of the ceramide generating machinery to induce apoptosis in airway epithelial cells. These findings add to the complexity of how oxidative stress promotes lung cell injury.  相似文献   

11.
The antioxidant nordihydroguaiaretic acid (NDGA) has recently become well known as a putative anticancer drug. In this paper, it was evaluated the in vitro peroxynitrite (ONOO(-)), singlet oxygen ((1)O(2)), hydroxyl radical (OH(v)), hydrogen peroxide (H(2)O(2)), superoxide anion and hypochlorous acid (HOCl) scavenging capacity of NDGA. It was found that NDGA scavenges: (a) ONOO(-) (IC(50) = 4 +/- 0.94 microM) as efficiently as uric acid; (b) (1)O(2) (IC(50) = 151 +/- 20 microM) more efficiently than dimethyl thiourea, lipoic acid, N-acetyl-cysteine and glutathione; (c) OH(v) (IC(50) = 0.15 +/- 0.02 microM) more efficiently than dimethyl thiourea, uric acid, trolox, dimethyl sulfoxide and mannitol, (d) (IC(50) = 15 +/- 1 microM) more efficiently than N-acetyl-cysteine, glutathione, tempol and deferoxamine and (e) HOCl (IC(50) = 622 +/- 42 microM) as efficiently as lipoic acid and N-acetyl-cysteine. NDGA was unable to scavenge H(2)O(2). In an in vivo study in rats, NDGA was able to prevent ozone-induced tyrosine nitration in lungs. It is concluded that NDGA is a potent in vitro scavenger of ONOO(-), (1)O(2), OH(v), and HOCl and is able to prevent lung tyrosine nitration in vivo.  相似文献   

12.
The risk of agranulocytosis associated with the use of pyrazolone drugs at therapeutical doses and for short periods of time has been considered to be very low. However, little or no attention at all has been devoted to the possible hindrance of neutrophil burst and scavenging of neutrophil-generated reactive oxygen species (ROS) by these compounds. Such an effect could be beneficial in the case of overactivation of neutrophils but could also be highly detrimental if the number of circulating neutrophils is already decreased. Thus, the aim of the present study was to evaluate the putative inhibitory effect of the pyrazolones dipyrone, aminopyrine, isopropylantipyrine, and antipyrine against human neutrophil burst and their scavenging activity against O2.-, H2O2, HO., ROO., and HOCl. The obtained results showed that dipyrone and aminopyrine prevent phorbol-12-myristate-13-acetate-induced neutrophil burst with high efficiency, while isopropylantipyrine had little effect and antipyrine had no effect at all. Dipyrone and aminopyrine were highly potent scavengers of HO. and HOCl, while, in accordance with the neutrophil burst results, isopropylantipyrine had little effect and antipyrine had no effect at all against these two ROS. None of the studied pyrazolones was capable of scavenging O2.- or H2O2, while dipyrone was shown to be the most reactive against ROO..  相似文献   

13.
Increased oxidative/nitrosative stress, resulting from generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears to play an important role in the inflammatory responses to atherosclerosis. By using MitoTracker Orange CM-H(2)TMRos, CM-H(2)DCFDA (DCF-DA), Dihydrorhodamine 123 (DHR123), DAF-FM, Dihydroethidium (DHE) and JC-1 alone or in all combinations of red and green probes, the present study was designed to monitor the ROS and RNS generation in acute exposure of single monocyte U937-derived macrophage to oxidized low density lipoprotein (Ox-LDL). Acute Ox-LDL (100 microg/ml) treatment increased time-dependently production of intracellular nitric oxide (NO), superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)), and decreased mitochondrial membrane potential (Deltapsi) in single cell. Pretreatment of aminoguanidine (an inhibitor of inducible nitric oxide synthase (iNOS), 10 microM) and vitamin C (an antioxidant agent, 100 microM) for 2h, reduced significantly the Ox-LDL-induced increase of NO and O2*-, and vitamin C completely inhibited increase of intracellular NO and O2*-. In contrast to aminoguanidine, Vitamin C pretreatment significantly prevented Ox-LDL-induced overproduction of NO and O2*- (P<0.01), indicating that antioxidant may be more effective in therapeutic application than iNOS inhibitor in dysfunction of ROS/RNS. By demonstrating a complex imbalance of ROS/RNS via fluorescent probes in acute exposure of single cell to Ox-LDL, oxidative/nitrosative stress might be more detected in the early atherosclerotic lesions.  相似文献   

14.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

15.
The effects of sulfasalazine (SASP) and its cleavage products 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP) on prostanoid (PG) synthesis and degradation were determined in rabbit colonic mucosa fractions in vitro. When the microsomal fraction was incubated with (14C)arachidonic acid, 10(-3) M SASP and SP did not markedly change the formation of labeled PGE2, PGF2 alpha, TxB2 and 6-keto-PGF1 alpha X 10(-4) M 5-ASA increased synthesis about 2.7-fold; the pattern of PG identified was unaltered. In the presence of the 10-fold higher concentration of 5-ASA, PG synthesis remained elevated at a similar level. When the cytosolic fraction was incubated with (3H)PGE2, 10(-3) M 5-ASA was without influence and 10(-3) M SP decreased slightly PGE2 breakdown. However, SASP showed a pronounced inhibitory effect at 10(-5) M and inhibition of PGE2 degradation was complete at 10(-3) M SASP. The results are compatible with the assumption that stimulation of PG synthesis by 5-ASA is related to therapeutic benefit in the treatment of ulcerative colitis.  相似文献   

16.
? The nonenergy-conserving alternative oxidase (AOX) has been hypothesized to modulate the amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plant mitochondria but there is sparse direct in planta evidence to support this. ? Laser scanning fluorescent confocal microscopy and biochemical methods were used to directly estimate in planta leaf concentrations of superoxide (O2(-)), nitric oxide (NO), peroxynitrite (ONOO(-)) and hydrogen peroxide (H(2)O(2)) in wildtype (Wt) tobacco (Nicotiana tabacum) and transgenic tobacco with altered amounts of AOX. ? We found that plants lacking AOX have increased concentrations of leaf mitochondrial-localized O2(-) and leaf NO in comparison to the Wt, while leaf concentrations of H(2)O(2) were similar or lower in the AOX-suppressed plants. ? Based on our results, we suggest that AOX respiration acts to reduce the generation of ROS and RNS in plant mitochondria by dampening the leak of single electrons from the electron transport chain to O(2) or nitrite. This may represent a universal role for AOX in plants. More work is now needed to establish the functional implications of this role, such as during abiotic and biotic stress.  相似文献   

17.
Bucillamine (BUC) is used clinically for the treatment of rheumatoid arthritis. Some of the pharmacological action of BUC has been reported as being dependent on the production of reactive oxygen species (ROS). In this paper the reactivity of BUC with superoxide anion radical (O(2) (*-)) generated from potassium superoxide/18-crown-6 ether dissolved in DMSO, hydroxyl radical (HO(*)) produced in the Cu(2+)-H(2)O(2) reaction, peroxyl radical (ROO(*)) from 2,2'-azobis (2-amidino-propane) dichloride decomposition, and singlet oxygen ((1)O(2)) from a mixture of alkaline aqueous H(2)O(2) and acetonitrile, have been investigated. Chemiluminescence, fluorescence, electron paramagnetic resonance (EPR) spin-trapping techniques and the deoxyribose and oxygen radical absorbance capacity towards ROO(*) (ORAC(ROO)) assays were used to elucidate the anti- and pro-oxidative behaviours of BUC towards ROS. The results indicated that BUC efficiently inhibited chemiluminescence from the O(2) (*-)-generating system at relatively high concentrations (0.5-2 mmol/L); however, at lower concentrations (<0.5 mmol/L) the drug enhanced light emission. The behaviour of BUC was correlated with a capacity to decrease the chemiluminescence signal from the Cu(2+)-H(2)O(2) system; scavenging HO(*) was effective only at high concentrations (1-2 mmol/L) of the drug. Bucillamine also prevented deoxyribose degradation induced by HO(*) in a dose-dependent manner, reaching maximal inhibition (24.5%) at a relative high concentration (1.54 mmol/L). Moreover, BUC reacts with ROO(*); the relative ORAC(ROO) was found to be 0.34 micromol/L Trolox equivalents/micromol sample. The drug showed quenching of (1)O(2)-dependent 2,2,6,6-tetramethylpiperidine-N-oxide radical formation from 2,2,6,6-tetramethyl-piperidine (e.g. 90% inhibition was found at 1 mmol/L concentration). The results showed that BUC may directly scavenge ROS or inhibit reactions generating them. However, the drug may have pro-oxidant activity under some reaction conditions.  相似文献   

18.
5-Aminosalicylic Acid (5-ASA) has been used for over 50 years in the treatment of inflammatory bowel disease in the pro-drug form sulphasalazine (SASP). SASP is also used to treat rheumatoid arthritis. However whether the therapeutic properties of SASP are due to the intact molecule, the 5-ASA or sulphapyridine components is unknown. Several mechanisms of action have been proposed for 5-ASA and SASP including interference in the metabolism of arachidonic acid to prostaglandins and leukotrienes, scavenging,of reactive oxygen species, effects on leucocyte function and production of cytokines. However, it is unlikely that the anti-inflammatory properties of SASP and 5-ASA are due to several different properties but more likely that a single property of 5-ASA explains the theraapeutic effects of 5-ASA and SASP. Reactive oxygen species (ROS) are involved in the metabolism of prostaglandins and leukotrienes and can act as second messengers, and so the scavenging of ROS may be the single mechanism of action of 5-ASA that gives rise to its antiinflammatory effects in both inflammatory bowel disease and rheumatoid arthritis.  相似文献   

19.
Hydroxystilbenes are naturally occurring polyphenols with protective effects against reactive oxygen and nitrogen species (ROS/RNS). Here, we investigated oxyresveratrol (OXY), which is contained in high amounts in mulberry wood, in comparison to the antioxidant resveratrol (RES). We found that OXY is a more effective scavenger for 2,2-diphenyl-1-picryl-hydrazyl (DPPH, 100 microM) used as a general free radical model, compared to RES or trans-4-hydroxystilbene (IC(50)=28.9, 38.5, and 39.6 microM, respectively). When primary glial cell cultures were loaded with the ROS/RNS-sensitive fluorochrome 2,7-dichlorodihydrofluorescein, the lowest rise in the fluorescence signal after H(2)O(2) exposure was seen when the cells were pretreated with OXY. Using 4,5-diaminofluorescein (DAF-2) to monitor free nitric oxide levels (7.7 microM NO) in a spectrofluorimetric cell-free assay, we found again that OXY (at 5 microM) is a more effective scavenger. Accordingly, cultures of the murine microglial cell line N9 and primary mixed glial cultures were used to test the drug effects of NO production upon expression of the inducible isoform of nitric oxide synthase (iNOS). We found that both compounds considerably diminished NO (nitrite) levels, RES more effectively than OXY (IC(50)=22.36 and 45.31 microM). RES but not OXY down-regulated the expression of iNOS protein, but both did not alter iNOS activity. Furthermore, OXY displayed a generally lower cytotoxicity than RES. The radical and ROS scavenging properties, as well as the lower cytotoxicity towards microglia and the known good water solubility suggest OXY as a potential protectant against ROS/RNS.  相似文献   

20.
NO(*) alone is a poorly reactive species; however, it is able to undergo secondary reactions to form highly oxidizing and nitrating species, NO(2)(*), N(2)O(3), and ONOO(-). These secondary reactive nitrogen species (RNS) are capable of modifying a diversity of biomolecular structures in the cell. The chemical properties of individual RNS will be discussed, along with their ability to react with amino acids, metal cofactors, lipids, cholesterol, and DNA bases and sugars. Many of the identified RNS-induced modifications have been observed both in vitro and in vivo. Several of these chemical modifications have been attributed with a functional role in the cell, such as the modulation of enzyme activity. Other areas in the field will be discussed, including the ability of RNS to react with metabolites, RNA, and substrates in the mitochondrion, and the cellular removal/repair of RNS-modified structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号