首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background aims

The chronic inflammation of autoimmune diseases develops repetitive localized destruction or systemic disorders, represented by Hashimoto's thyroiditis (HT) and Systemic lupus erythematosus (SLE) respectively. Currently, there are no efficient ways to treat these autoimmune diseases. Therefore, it is critically important to explore new therapeutic strategies. The aim of this study was to investigate the therapeutic efficacy of human amniotic epithelial cells (hAECs) in murine models of HT and SLE.

Methods

Experimental autoimmune thyroiditis (EAT) was induced in female CBA/J mice by immunization with porcine thyroglobulin (pTg). hAECs were intravenously administered at different time points during the disease course. MRL-Faslpr mice, a strain with spontaneously occurring SLE, were intravenously administered hAECs when their sera were positive for both anti-nuclear antibodies (ANAs) and anti-double-stranded DNA (anti-dsDNA) antibodies. Two weeks after the last cell transplantation, blood and tissue samples were collected for histological examination and immune system analysis.

Results

hAECs prevented lymphocytes infiltration into the thyroid and improved the damage of thyroid follicular in EAT mice. Correspondingly, hAECs administration reduced anti-thyroglobulin antibodies (TGAb), anti-thyroid peroxidase antibodies (TPOAb) and thyroid stimulating hormone (TSH) levels. SLE mice injected with hAECs appeared negative for ANAs and anti-dsDNA antibodies and showed reduced immunoglobulin profiles. Mechanically, hAECs modulated the immune cells balance in EAT and SLE mice, by downregulating the ratios of Th17/Treg cells in both EAT and SLE mice and upregulating the proportion of B10 cells in EAT mice. This was confirmed by in vitro assay, in which hAECs inhibited the activation of EAT mice-derived splenocytes. Moreover, hAECs improved the cytokine environment in both EAT and SLE mice, by suppressing the levels of IL-17A and IFN-γ and enhancing TGF-β.

Conclusion

These results demonstrated the immunoregulatory effect of hAECs for inflammation inhibition and injury recovery in HT and SLE murine models. The current study may provide a novel therapeutic strategy for these autoimmune diseases in clinic.  相似文献   

2.
Autoimmune disorders constitute a diverse group of phenotypes with overlapping features and a tendency toward familial aggregation. It is likely that common underlying genes are involved in these disorders. Until very recently, no specific alleles--aside from a few common human leukocyte antigen class II genes--had been identified that clearly associate with multiple different autoimmune diseases. In this study, we describe a unique collection of 265 multiplex families assembled by the Multiple Autoimmune Disease Genetics Consortium (MADGC). At least two of nine "core" autoimmune diseases are present in each of these families. These core diseases include rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), multiple sclerosis (MS), autoimmune thyroid disease (Hashimoto thyroiditis or Graves disease), juvenile RA, inflammatory bowel disease (Crohn disease or ulcerative colitis), psoriasis, and primary Sjogren syndrome. We report that a recently described functional single-nucleotide polymorphism (rs2476601, encoding R620W) in the intracellular tyrosine phosphatase (PTPN22) confers risk of four separate autoimmune phenotypes in these families: T1D, RA, SLE, and Hashimoto thyroiditis. MS did not show association with the PTPN22 risk allele. These findings suggest a common underlying etiologic pathway for some, but not all, autoimmune disorders, and they suggest that MS may have a pathogenesis that is distinct from RA, SLE, and T1D. DNA and clinical data for the MADGC families are available to the scientific community; these data will provide a valuable resource for the dissection of the complex genetic factors that underlie the various autoimmune phenotypes.  相似文献   

3.
Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disease of unknown etiology. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is operative in innate and adaptive immunity and important in immune-mediated diseases such as rheumatoid arthritis and atherosclerosis. The functional relevance of MIF in systemic autoimmune diseases such as SLE is unknown. Using the lupus-prone MRL/lpr mice, we aim to examine the expression and function of MIF in this murine model of systemic autoimmune disease. These experiments revealed that renal MIF expression was significantly higher in MRL/lpr mice compared with nondiseased control mice (MRL/MpJ), and MIF was also markedly up-regulated in skin lesions of MRL/lpr mice. To examine the effect of MIF on development of systemic autoimmune disease, we generated MRL/lpr mice with a targeted disruption of the MIF gene (MIF(-/-)MRL/lpr), and compared their disease manifestations to MIF(+/+)MRL/lpr littermates. MIF(-/-)MRL/lpr mice exhibited significantly prolonged survival, and reduced renal and skin manifestations of SLE. These effects occurred in the absence of major changes in T and B cell markers or alterations in autoantibody production. In contrast, renal macrophage recruitment and glomerular injury were significantly reduced in MIF(-/-)MRL/lpr mice, and this was associated with reduction in the monocyte chemokine MCP-1. Taken together, these data suggest MIF as a critical effector of organ injury in SLE.  相似文献   

4.
Pathway-based analysis approach has exploded in use during the last several years. It is successful in recognizing additional biological insight of disease and finding groupings of risk genes that represent disease developing processes. Therefore, shared pathways, with pleiotropic effects, are important for understanding similar pathogenesis and indicating the common genetic origin of certain diseases. Here, we present a pathway analysis to reveal the potential disease associations between RA and three potential RA-related autoimmune diseases: psoriasis, diabetes mellitus, type 1 (T1D) and systemic lupus erythematosus (SLE). First, a comprehensive knowledge mining of public databases is performed to discover risk genes associated with RA, T1D, SLE and psoriasis; then by enrichment test of these genes, disease-related risk pathways are detected to recognize the pathways common for RA and three other diseases. Finally, the underlying disease associations are evaluated with the association rules mining method. In total, we identify multiple RA risk pathways with significant pleiotropic effects, the most unsurprising of which are the immunology related pathways. Meanwhile for the first time we highlight the involvement of the viral myocarditis pathway related to cardiovascular disease (CVD) in autoimmune diseases such as RA, psoriasis, T1D and SLE. Further Association rule mining results validate the strong association between RA and T1D and RA and SLE. It is clear that pleiotropy is a common property of pathways associated with disease traits. We provide novel pathway associations among RA and three autoimmune diseases. These results ascertain that there are shared genetic risk profiles that predispose individuals to autoimmune diseases.  相似文献   

5.
Human autoimmune diseases thought to arise from the combined effects of multiple susceptibility genes include systemic lupus erythematosus (SLE) and autoimmune diabetes. Well-characterised polygenic mouse models closely resembling each of these diseases exist, and genetic evidence links receptors for the Fc portion of immunoglobulin G (FcR) with their pathogenesis in mice and humans [1] [2] [3]. FcRs may be activatory or inhibitory and regulate a variety of immune and inflammatory processes [4] [5]. FcgammaRII (CD32) negatively regulates activation of cells including B cells and macrophages [6]. FcgammaRII-deficient mice are prone to immune-mediated disease [7] [8] [9]. The gene encoding FcgammaRII, Fcgr2, is contained in genetic susceptibility intervals in mouse models of SLE such as the New Zealand Black (NZB) contribution to the (NZB x New Zealand White (NZW)) F1 strain [1] [10] [11] and the BXSB strain [12], and in human SLE [1] [2] [3]. We therefore sequenced Fcgr2 and identified a haplotype defined by deletions in the Fcgr2 promoter region that is present in major SLE-prone mouse strains (NZB, BXSB, SB/Le, MRL, 129 [13]) and non-obese diabetic (NOD) mice but absent in control strains (BALB/c, C57BL/6, DBA/2, C57BL/10) and NZW mice. The autoimmune haplotype was associated with reduced cell-surface expression of FcgammaRII on macrophages and activated B cells and with hyperactive macrophages resembling those of FcgammaRII-deficient mice, and is therefore likely to play an important role in the pathogenesis of SLE and possibly diabetes.  相似文献   

6.
Recent linkage and association studies provide evidence for thyroglobulin (Tg) being an autoimmune thyroid disease (AITD) susceptibility gene. The Tg locus has been reported to be linked with AITD in two independent studies, and further analysis demonstrated that markers within the Tg gene were associated with AITD. Furthermore, missense single-nucleotide polymorphisms (SNPs) in the Tg gene were shown to be associated with autoimmune thyroiditis in both mice and humans. If Tg is confirmed as a susceptibility gene for AITD, it could provide a novel therapeutic target.  相似文献   

7.
Recent findings on genes associated with inflammatory disease   总被引:3,自引:0,他引:3  
Yamada R  Ymamoto K 《Mutation research》2005,573(1-2):136-151
Inflammatory diseases encompass a variety of medical conditions. In this chapter, autoimmune diseases and allergic disorders will be our focus. The autoimmune diseases include organ-specific autoimmunities, such as type I diabetes mellitus and autoimmune thyroiditis (AITD), and organ non-specific disorders such as systemic lupus erythematosus (SLE). All of them seem to share aspects of aberrant immunologic tolerance toward self-antigens. Asthma and atopic diathesis are among the allergies. Crohn disease and SLE are relatively rare with a prevalence of 10-50 per 100,000, and rheumatoid arthritis (RA), psoriasis, AITD and asthma are commoner with a prevalence of 500 per 100,000 or much higher. The difference among ethnic groups is not prominent for rheumatoid arthritis, psoriasis, AITD or asthma, but Crohn disease and SLE affect some ethnic populations more than others. Although all of these disorders have some environmental component, asthma and atopy seem most affected by environmental factors, as is suggested by the significant increase in their incidence over the last several decades with changes in various environmental factors, especially in developed countries. Over the last 10 years, multiple linkage studies revealed many disease-linked loci throughout the genome with various consistencies. As implicated by some pathophysiological studies of inflammatory immune system related disorders, certain loci are involved in multiple disorders. In the following sections, reports on the identification of disease-associated genes or markers will be summarized for individual diseases (cytotoxic T lymphocyte-associated 4 (CTLA4), CARD15, DLG5, SLC22A4/A5, programmed cell death 1 (PDCD1), RUNX1, SLC9A3R1/NAT9, PADI4, ADAM33, DPP10, PHF11 and GPRA), followed by a discussion of the genes that have been implicated in multiple disorders.  相似文献   

8.
Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic component and is characterized by chronic inflammation and the production of anti-nuclear auto-antibodies. In the era of genome-wide association studies (GWASs), elucidating the genetic factors present in SLE has been a very successful endeavor; 28 confirmed disease susceptibility loci have been mapped. In this review, we summarize the current understanding of the genetics of lupus and focus on the strongest associated risk loci found to date (P <1.0 × 10−8). Although these loci account for less than 10% of the genetic heritability and therefore do not account for the bulk of the disease heritability, they do implicate important pathways, which contribute to SLE pathogenesis. Consequently, the main focus of the review is to outline the genetic variants in the known associated loci and then to explore the potential functional consequences of the associated variants. We also highlight the genetic overlap of these loci with other autoimmune diseases, which indicates common pathogenic mechanisms. The importance of developing functional assays will be discussed and each of them will be instrumental in furthering our understanding of these associated variants and loci. Finally, we indicate that performing a larger SLE GWAS and applying a more targeted set of methods, such as the ImmunoChip and next generation sequencing methodology, are important for identifying additional loci and enhancing our understanding of the pathogenesis of SLE.  相似文献   

9.
Two common forms of autoimmune thyroid diseases are Graves' disease and Hashimoto's thyroiditis. Cytotoxic T lymphocyte antigen 4 (CTLA4) encoded by the CTLA4 gene on chromosome 2q33 plays a role in susceptibility to Graves' disease and is probably important also for Hashimoto's thyroiditis as well as for the other endocrine autoimmune disorders. The CTLA4 locus is the only nonhuman leukocyte antigen locus that has been found in association with Graves' disease repeatedly. Particularly, association of three polymorphic markers of CTLA4 gene, namely, C(-318)T, A49G, and (AT)n dinucleotide repeat, with Graves' disease was demonstrated in most of the population-based investigations. On the other hand, there are few studies to reveal the association of these markers with Hashimoto's thyroiditis. A49G polymorphism was proposed to be associated with Hashimoto's thyroiditis, and C(-318)T was suggested to be not associated. The patient groups consisted of 88 patients (10 males and 78 females; mean age: 14.5 +/- 3.2 years [4.6-21.0 years]) with a previous diagnosis of Hashimoto's thyroiditis and 112 euthyroid volunteers (51 males and 61 females; mean age: 14.1 +/- 2.9 years [5.2-18 years]). The frequency of A/G (A49G) genotype was high and statistically significant in patients with Hashimoto's thyroiditis in comparison with the control group. Although the frequency of C/T [C(-318)T] genotype is not significantly high in children with Hashimoto's thyroiditis according to the control group, the risk of Hashimoto's thyroiditis in A/G genotype group was 4.66 times greater than the group with A/A genotype. In this study, we documented that the A49G polymorphism might increase the susceptibility for Hashimoto's thyroiditis.  相似文献   

10.
Cyclosporin A (CsA), a potent immunosuppressive drug, caused organ-specific autoimmune disease, such as gastritis with anti-parietal cell autoantibodies or oophoritis with anti-oocyte autoantibodies, in BALB/c mice when the drug was administered daily for 1 wk to newborns. Administration to adult mice did not. CsA abrogated the production of L3T4+ T cells and Lyt-2+ T cells in the thymus. Consequently, these T cells were substantially depleted from the peripheral lymphoid organs, especially when the drug was administered from the day of birth. Autoimmune disease was prevented when CsA-treated newborn mice were inoculated with splenic T cells from normal syngeneic mice. However, removal of the thymus immediately after neonatal CsA treatment produced autoimmune disease with a higher incidence and in a wider spectrum of organs, i.e., thyroiditis, sialoadenitis of the salivary gland, gastritis, insulitis of the endocrine pancreas, adrenalitis, oophoritis, or orchitis. Each autoimmune disease was accompanied by the development of circulating autoantibodies specific for the corresponding organ Ag. Immunopathology of these autoimmune diseases was quite similar to that of human organ-specific autoimmune diseases.  相似文献   

11.
Genome-wide association studies (GWAS) have been shown to be a powerful way of identifying novel susceptibility genes in systemic lupus erythematosus (SLE), as demonstrated by a series of publications in the past year. Lupus has been a late-comer to the GWAS community, being preceded by success stories for the GWAS approach in other autoimmune diseases, including type I diabetes, ankylosing spondylitis, rheumatoid arthritis, Crohn's disease and ulcerative colitis. The paper by Suarez-Gestal and colleagues seeks to exploit the wealth of data available from a total of four GWAS in SLE, three in European-American populations and one in a Swedish population. The authors describe replication of ten lupus susceptibility alleles in a Spanish SLE case-control study.  相似文献   

12.
TIM-3 as a new therapeutic target in systemic lupus erythematosus   总被引:1,自引:0,他引:1  
T-cell immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3) was the first surface molecule that specifically identifies Th1 cells in both mice and human. Recently, identification of Galectin-9 as a ligand for TIM-3 has established the TIM-3–Galectin-9 pathway as an important regulator of Th1 immunity and tolerance induction. Many previous studies have demonstrated that TIM-3 influences chronic autoimmune diseases, such as multiple sclerosis and rheumatoid arthritis. In addition, association of TIM-3 polymorphisms with susceptibility to several autoimmune diseases has been identified. Recent work has explored the role of TIM-3 in systemic lupus erythematosus (SLE), and their results indicate that TIM-3 may represent a novel target for the treatment of SLE. In this review, we will discuss the TIM-3 pathway and the therapeutic potential of modulating the pathway in SLE.  相似文献   

13.
Autoimmunity to thyroid antigens leads to two distinct pathogenic processes with opposing clinical outcomes: hypothyroidism in Hashimoto's thyroiditis and hyperthyroidism in Graves' disease. The high frequency of these diseases and easy accessibility of the thyroid gland has allowed the identification of key pathogenic mechanisms in organ-specific autoimmune diseases. In early investigations, antibody- and T-cell-mediated death mechanisms were proposed as being responsible for autoimmune thyrocyte depletion. Later, studies on apoptosis have provided new insights into autoimmune target destruction, indicating the involvement of death receptors and cytokine-regulated apoptotic pathways in the pathogenesis of thyroid autoimmunity.  相似文献   

14.
Thyroglobulin (Tg) represents one of the largest known self-antigens involved in autoimmunity. Numerous studies have implicated it in triggering and perpetuating the autoimmune response in autoimmune thyroid diseases (AITD). Indeed, traditional models of autoimmune thyroid disease, experimental autoimmune thyroiditis (EAT), are generated by immunizing mice with thyroglobulin protein in conjunction with an adjuvant, or by high repeated doses of Tg alone, without adjuvant. These extant models are limited in their experimental flexibility, i.e. the ability to make modifications to the Tg used in immunizations. In this study, we have immunized mice with a plasmid cDNA encoding the full-length human Tg (hTG) protein, in order to generate a model of Hashimoto's thyroiditis which is closer to the human disease and does not require adjuvants to breakdown tolerance. Human thyroglobulin cDNA was injected and subsequently electroporated into skeletal muscle using a square wave generator. Following hTg cDNA immunizations, the mice developed both B and T cell responses to Tg, albeit with no evidence of lymphocytic infiltration of the thyroid. This novel model will afford investigators the means to test various hypotheses which were unavailable with the previous EAT models, specifically the effects of hTg sequence variations on the induction of thyroiditis.  相似文献   

15.
Torkamani A  Topol EJ  Schork NJ 《Genomics》2008,92(5):265-272
Recent genome-wide association studies (GWAS) have identified DNA sequence variations that exhibit unequivocal statistical associations with many common chronic diseases. However, the vast majority of these studies identified variations that explain only a very small fraction of disease burden in the population at large, suggesting that other factors, such as multiple rare or low-penetrance variations and interacting environmental factors, are major contributors to disease susceptibility. Identifying multiple low-penetrance variations (or "polygenes") contributing to disease susceptibility will be difficult. We present a pathway analysis approach to characterizing the likely polygenic basis of seven common diseases using the Wellcome Trust Case Control Consortium (WTCCC) GWAS results. We identify numerous pathways implicated in disease predisposition that would have not been revealed using standard single-locus GWAS statistical analysis criteria. Many of these pathways have long been assumed to contain polymorphic genes that lead to disease predisposition. Additionally, we analyze the genetic relationships between the seven diseases, and based upon similarities with respect to the associated genes and pathways affected in each, propose a new way of categorizing the diseases.  相似文献   

16.
17.
Y Shoenfeld  E Mozes 《FASEB journal》1990,4(9):2646-2651
Systemic lupus erythematosus (SLE) is considered a classical autoimmune disease that involves many biological systems. Similar to other autoimmune conditions, its etiology is multifactorial entailing genetic, environmental, hormonal, and immunologic factors. In this review we demonstrate that by using a pathogenic idiotype of anti-DNA autoantibodies, it is possible to explain some of the pathogenesis and diversity of clinical and serological manifestations reported by SLE patients. The 16/6 idiotype (Id) is a representative pathogenic idiotype of anti-DNA autoantibodies. The serum titers of 16/6 Id in SLE patients correlate with clinical activity of the disease, and are deposited in afflicted tissues in SLE patients. SLE was experimentally induced in naive mice after immunization with 1 microgram of the Id. The disease is characterized clinically (proteinuria), serologically (e.g., anti-dsDNA, anti-Sm antibodies), and by pathological findings (e.g., deposition of 16/6 Id in the kidneys). The condition can be induced by other human and mouse antibodies carrying the 16/6 Id, as well as by mouse antimonoclonal-16/6 Id and by T cell lines and clones specifically reactive with 16/6 Id. There are strain-dependent differences in susceptibility to the induction of systemic lupus erythematosus (SLE). Induction of SLE is directly correlated with the ability to respond to the 16/6 idiotype (or 16/6 Id)2 by anti-Id antibody production. It is easier to induce the disease in females, and it can be modulated by manipulation of sex hormones. Being able to identify the pathogenic idiotype allowed us to generate T suppressor (Ts) cells specific for the 16/6 Id. Treatment of mice with these T cells abrogated the disease. Our studies point to the importance of pathogenic idiotypes of autoantibodies in autoimmunity, which suggests that SLE may represent a dysregulation of a functional network of idiotypes-anti-idiotypes interactions among autoreactive B cells, T helper cells, and T suppressor cells.  相似文献   

18.
In spite of the well-known clustering of multiple autoimmune disorders in families, analyses of specific shared genes and polymorphisms between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) have been limited. Therefore, we comprehensively tested autoimmune variants for association with SLE, aiming to identify pleiotropic genetic associations between these diseases. We compiled a list of 446 non–Major Histocompatibility Complex (MHC) variants identified in genome-wide association studies (GWAS) of populations of European ancestry across 17 ADs. We then tested these variants in our combined Caucasian SLE cohorts of 1,500 cases and 5,706 controls. We tested a subset of these polymorphisms in an independent Caucasian replication cohort of 2,085 SLE cases and 2,854 controls, allowing the computation of a meta-analysis between all cohorts. We have uncovered novel shared SLE loci that passed multiple comparisons adjustment, including the VTCN1 (rs12046117, P = 2.02×10−06) region. We observed that the loci shared among the most ADs include IL23R, OLIG3/TNFAIP3, and IL2RA. Given the lack of a universal autoimmune risk locus outside of the MHC and variable specificities for different diseases, our data suggests partial pleiotropy among ADs. Hierarchical clustering of ADs suggested that the most genetically related ADs appear to be type 1 diabetes with rheumatoid arthritis and Crohn''s disease with ulcerative colitis. These findings support a relatively distinct genetic susceptibility for SLE. For many of the shared GWAS autoimmune loci, we found no evidence for association with SLE, including IL23R. Also, several established SLE loci are apparently not associated with other ADs, including the ITGAM-ITGAX and TNFSF4 regions. This study represents the most comprehensive evaluation of shared autoimmune loci to date, supports a relatively distinct non–MHC genetic susceptibility for SLE, provides further evidence for previously and newly identified shared genes in SLE, and highlights the value of studies of potentially pleiotropic genes in autoimmune diseases.  相似文献   

19.
Antibodies to self-antigens are characteristic of several human and murine autoimmune diseases. Subsets of those autoantibodies cause organ damage in some instances, such as IgG antibodies to DNA in human and murine systemic lupus erythematosus (SLE). Our experiments in the NZB/NZW F1 (BW) female mouse model of SLE were designed to define idiotypic (Id) structures on antibodies to DNA in attempts to distinguish pathogens from nonpathogens within the anti-DNA population. Two important findings emerged. First, the number of public Id expressed became relatively restricted as the mice aged, with three such Id (IdX, IdGN1 and IdGN2) dominating and accounting for 30 to 95% of the total serum IgG in all individual nephritic mice studied, and 81 to 86% of the total IgG in serum pools from 30-wk-old nephritic mice. Second, IdGN1 and IdGN2 constituted approximately 50% of the IgG deposited in glomeruli of nephritic mice; IdX was present in negligible quantities in glomeruli, whereas it was usually the most frequent Id in BW serum. These latter findings suggested that pathogens and nonpathogens can be distinguished by their idiotypy in this animal model. The finding of relative Id restriction suggests the occurrence of an idiotypic "spreading" phenomenon, in which a regulatory process appears as BW mice age that results in repeated selection and expansion of this small number of Id, one group of which, the IdGN, is pathogenic. This process was further suggested in experiments in which IdX was suppressed by administration of anti-IdX; the "escape" antibodies to DNA appearing after suppression of IdX were composed largely of IdGN1 and IdGN2, without a major contribution from Id-negative mutants. Defining the basis of this Id spreading or restriction phenomenon may provide important information regarding the pathogenesis of this autoimmune disease.  相似文献   

20.
Primary myxedema and hypothyroid Hashimoto's disease provide a well-documented example of organ-specific autoimmunity in man. Very slight modifications or increased release of thyroglobulin or thyroid antigens in the circulation may cause the rupture of autotolerance for the normal thyroid components, at least when individuals have a genetic predisposition to autoimmune thyroiditis (possibly associated with a predisposition to other autoimmune diseases). The demonstration of an association between HLA and thyroiditis, however, requires additional studies. The basic immunological abnormality responsible for autoimmunization against thyroid components is a defect in suppressor T cells, shown in experimental animals but not firmly established in man. The result of autoimmunization will be the appearance of cytotoxic mechanisms that lead to destruction of the thyroid follicle with progressive fibrosis, antibody-dependent cell-mediated cytotoxicity apparently being of major importance. A recent report shows, in addition, that thyroid atrophy in primary hypothyroidism is associated with the production of antibodies that block the thyroid-growth-promoting activity of TSH. The recent progress made in our understanding of autoimmune thyroiditis will certainly contribute to improving our knowledge of how and when autoimmunization might develop in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号