首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background aimsWhen a severe neurologic lesion occurs as a consequence of intracerebral hemorrhage (ICH), there is no effective treatment available for improving the outcome. However, cell therapy has opened new perspectives on reducing neurologic sequels subsequent to this diseaseMethodsIn this study, ICH was induced by stereotactic injection of 0.5 U collagenase type IV in the striatum of adult Wistar rats, and 2 h later a group of animals (n = 48) was subjected to intracerebral injection of 2 × 106 allogeneic bone marrow stromal cells (BMSC), while a control group (n = 48) received saline only. Eight animals from each group were killed at 48 h, 72 h, 7 days, 14 days, 21 days and 28 days. At these time-points, endogenous neurogenesis and survival of transplanted BMSC were studied.ResultsOur findings show that after allogeneic BMSC transplantation, donor cells can survive in the brain tissue expressing neuronal and astroglial markers. Furthermore, BMSC transplantation enhances endogenous neurogenesis and inhibits apoptosis of newborn neural cells.ConclusionsAlthough these results should be extrapolated to human disease with caution, it is obvious that cell therapy using allogeneic BMSC transplantation offers great promise for developing novel and efficacious strategies in patients suffering ICH.  相似文献   

2.
Background aimsCell therapy using bone marrow stromal cells (BMSCs) has been considered a promising strategy for neurologic sequelae after intracerebral hemorrhage (ICH). However, after intracerebral administration of BMSCs, most of the cells die, partly because of the absence of extracellular matrix. Intracerebral transplantation of BMSCs, supported in a platelet-rich plasma (PRP) scaffold, optimizes this type of cell therapy.MethodsICH was induced by stereotactic injection of 0.5 IU of collagenase type IV in the striatum of adult Wistar rats (n = 40). Two months later, the rats were subjected to intracerebral administration of 5 × 106 allogeneic BMSCs embedded in a PRP scaffold (n = 10), 5 × 106 allogeneic BMSCs in saline (n = 10), PRP-derived scaffold only (n = 10) or saline only (n = 10). Functional improvements in each group over the next 6 months were assessed using Rotarod and Video-Tracking-Box tests. Endogenous neurogenesis and survival of transplanted BMSCs were examined at the end of follow-up.ResultsOur study demonstrated neurologic improvement after BMSC transplantation and significantly better functional improvement for the group of animals that received BMSCs in the PRP-derived scaffold compared with the group that received BMSCs in saline. Histologic results showed that better functional outcome was associated with strong activation of endogenous neurogenesis. After intracerebral administration of BMSCs, donor cells were integrated in the injured tissue and showed phenotypic expression of glial fibrillary acidic protein and neuronal nucleus.ConclusionsPRP-derived scaffolds increase the viability and biologic activity of BMSCs and optimize functional recovery when this type of cell therapy is applied after ICH.  相似文献   

3.
Huang YL  Kuang J  Hu YZ  Song YB  Qiu RF  Mai WY 《Cytotherapy》2012,14(5):563-569
Background aimsWe investigated bone marrow stromal cell (BMSC) transplantation combined with angiotensin-converting enzyme inhibitor (ACEI) treatment in acute myocardial infarction (AMI) and the role of insulin-like growth factor-1 (IGF-1)MethodsAMI models were established in Sprague–Dawley rats by ligation of the left anterior descending coronary artery and grouped into blank control (BC), ACEI treatment (ACEI), BMSC transplantation (BMSC) and BMSC transplantation plus ACEI (combined). Perindopril (2.5 mg/kg) was administered by gavage to ACEI and combined groups from the day after AMI. BMSC (2 × 108) were injected into the border of the MI area a week later in the BMSC and combined groups.ResultsAfter 4 weeks, hemodynamics in the BMSC and combined groups were significantly improved (P < 0.05 versus BC), with the greatest improvement in the combined group (P < 0.05). In addition, an increased number of BMSC survived in the combined group (P < 0.05 versus BMSC). A proportion of BMSC was positive for troponin T, as detected by immunofluorescence. The number of apoptotic cardiomyocytes was decreased in the BMSC and ACEI groups, and even further in the combined group (P < 0.05). IGF-1 expression was up-regulated in the BMSC and combined groups (P < 0.05 versus BC), but not in the ACEI group. B cell lymphoma-2 (Bcl-2) expression was up-regulated in the ACEI, BMSC and combined groups, with the highest expression in the combined group (P < 0.05).ConclusionsOur results show that BMSC engrafted in AMI can survive well and secrete IGF-1 and preserve cardiac function significantly. These data suggest that BMSC transplantation inhibits apoptosis of cardiomyocytes by up-regulation of Bcl-2 expression in the myocardium, and this effect might be sensitized by ACEI.  相似文献   

4.
Minor T  Efferz P  Lüer B 《Cryobiology》2012,65(1):41-44
BackgroundDelayed graft function still represents a major complication in clinical kidney transplantation. Here we tested the possibility to improve functional outcome of cold stored kidneys a posteriori by hypothermic reconditioning using retrograde oxygen persufflation (ROP) immediately prior to reperfusion.MethodsKidneys from female German Landrace pigs were flushed with Histidine–Tryptophan–Ketoglutarate (HTK) solution and cold-stored for 18 h (control).Some grafts were subsequently subjected to 90 min of retrograde oxygen persufflation (ROP) via the renal vein during cold preservation. Early graft function of all kidneys was assessed thereafter by warm reperfusion in vitro (n = 6, resp.).ResultsRenal function upon reperfusion was significantly enhanced by ROP with an approximately twofold increase in renal clearances of creatinine and urea. ROP also led to higher renal vascular flow rates, enhanced urine output and mitigated histological alterations.ConclusionIt is concluded that initial graft function can be improved by 90 min of hypothermic gaseous oxygenation after arrival of the preserved organ in the transplantation clinic.  相似文献   

5.
Background aimsThe rising use of allogeneic transplantation in older recipients necessitates considering older related donors. The effect of related donor age for peripheral blood stem cell allografts (PBSC) on graft maintenance and outcomes, independent of CD34+cell dose, has not been well-characterized.MethodsHLA-related donors (98% siblings) underwent a uniform filgrastim-based mobilization regimen aiming to collect and infuse 5 × 106 CD34+ cells/recipient kg. Donor and recipient age were modeled in multiple ways to account for the correlation, and outcomes reported by decade of donor age.ResultsThe median donor and recipient ages were 52 years and 54 years, respectively. The mean CD34+ cell dose infused was 5.6 × 106 CD34+/kg and 75% of patients received a narrow range between 4.4 and 6.6 × 106 CD34+ cells/kg. Neither better PBSC mobilization nor higher CD34+ content of allografts was significantly associated with engraftment or transplant outcomes. After adjusting for recipient age and other prognostic factors, older donor age by decade conferred a lower risk of non-relapse mortality (NRM) [hazard ratio (HR) = 0.64, 95% confidence interval (CI) 0.45–0.91, P = 0.013] and borderline improvement in overall survival (OS) (HR = 0.76, 95% CI 0.58–0.99, P = 0.045) without altering progression-free survival (PFS) (HR = 0.85, 95% CI 0.66–1.07, P = 0.18).ConclusionsOlder donor age does not worsen outcome after matched related donor PBSC transplantation in patients receiving a narrow range CD34+ cells. The relatively small sample size mandates that the finding of similar to improved outcomes for older related donor age must be confirmed in larger studies.  相似文献   

6.
Background aimsThe beneficial activity of mesenchymal stromal cells (MSC) in allogeneic hematopietic stem cell transplantation requires correct use in terms of cell dose and timing of infusion and the identification of biomarkers for selection. The immunosuppressive bone marrow (BM)-derived MSC (BM-MSC) functions have been associated with the production of soluble HLA-G molecules (sHLA-G) via interleukin (IL)-10. We have established a reliable method for evaluating BM-MSC HLA-G expression without the influence of peripheral blood mononuclear cells (PBMC).MethodsThirteen BM-MSC from donors were activated with recombinant IL-10 or co-cultured with 10 different phytohemagglutinin (PHA)-treated PBMC (PHA-PBMC). Membrane-bound and sHLA-G expression was evaluated by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively; lymphoproliferation was measured by (methyl-3H)thymidine.ResultsThe results demonstrated the ability of IL-10 to stimulate both membrane-bound and sHLA-G production by BM-MSC. The levels of HLA-G expression induced by IL-10 in BM-MSC were associated with the inhibition of PHA-PBMC proliferation (sHLA-G, P = 0.0008, r = 0.9308; membrane HLA-G, P = 0.0005, r = 0.9502).ConclusionsWe propose the evaluation of sHLA-G production in IL-10-treated BM-MSC cultures as a possible marker of immunoregulatory function.  相似文献   

7.
Song C  Li G 《Cytotherapy》2011,13(5):549-561
Background aimsBone marrow-derived mesenchymal stromal cells (BMSC) have been shown to migrate to injury, ischemia and tumor microenvironments. The mechanisms by which mesenchymal stromal cells (MSC) migrate across endothelium and home to the target tissues are not yet fully understood.MethodsWe used rat BMSC to investigate the molecular mechanisms involved in their tropism to tumors in vitro and in vivo.ResultsBMSC were shown to migrate toward four different tumor cells in vitro, and home to both subcutaneous and lung metastatic prostate tumor models in vivo. Gene expression profiles of MSC exposed to conditioned medium (CM) of various tumor cells were compared and revealed that matrix metalloproteinase-2 (MMP-2) expression in BMSC was downregulated after 24 h exposure to tumor CM. Chemokine (C–X–C motif) Receptor 4 (CXCR4) upregulation was also found in BMSC after 24 h exposure to tumor CM. Exposure to tumor cell CM enhanced migration of BMSC toward tumor cells. Stromal Cell-Derived Factor (SDF-1) inhibitor AMD3100 and MMP-2 inhibitor partly abolished the BMSC migration toward tumor cells in vitro.ConclusionsThese results suggest that the CXCR4 and MMP-2 are involved in the multistep migration processes of BMSC tropism to tumors.  相似文献   

8.
Background aimsCell transplantation may restore viable muscle after myocardial infarction. Because many studies have focused on one cell type, we compared the characteristics of skeletal myoblasts (SKM), bone marrow stromal/stem cells (BMSC) and smooth muscle cells (SMC) and their effects on cardiac function after myocardial injury.MethodsIn vitro cell characteristics, including proliferation, hypoxic survival and vascular endothelial cell growth factor (VEGF) expression, of SKM, BMSC and SMC were compared. An in vivo left anterior descending artery ligation rat model was used, and cells were implanted into the infarct (n = 16 per cell type). Cell survival was determined by PKH26 staining and real-time polymerase chain reaction (PCR). Cardiac function, tissue VEGF and stem cell factor (SCF) expression and vasculogenesis were evaluated.ResultsAlthough cell morphologies were distinct, in vitro proliferation was similar. In vitro studies showed that SKM had the highest hypoxic survival, whereas BMSC had the lowest hypoxic survival but the highest VEGF expression. After implantation, SKM showed the highest overall survival and in vivo SCF expression, and both SMC and SKM expressed the highest VEGF levels. Vasculogenesis was significantly (P < 0.001) improved after transplantation of each cell type. Overall, BMSC and SKM promoted the greatest improvement in cardiac function.ConclusionsSKM, BMSC and SMC expressed VEGF and SCF and promoted vasculogenesis. Although BMSC showed the greatest regenerative potential relative to cell survival and growth factor expression, the greatest improvement in cardiac function was observed with BMSC and SKM.  相似文献   

9.
Background aimsBone marrow stromal cells (BMSC) have been shown to provide neuroprotection after transplantation into the injured central nervous system. The present study investigated whether adult rat BMSC differentiated along a Schwann cell lineage could increase production of trophic factors and support neuronal survival and axonal regeneration after transplantation into the injured spinal cord.MethodsAfter cervical C4 hemi-section, 5-bromo-2-deoxyuridine (BrdU)/green fluorescent protein (GFP)-labeled BMSC were injected into the lateral funiculus at 1 mm rostral and caudal to the lesion site. Spinal cords were analyzed 2–13 weeks after transplantation.Results and ConclusionsTreatment of native BMSC with Schwann cell-differentiating factors significantly increased production of brain-derived neurotrophic factor in vitro. Transplanted undifferentiated and differentiated BMSC remained at the injection sites, and in the trauma zone were often associated with neurofilament-positive fibers and increased levels of vascular endothelial growth factor. BMSC promoted extensive in-growth of serotonin-positive raphaespinal axons and calcitonin gene-related peptide (CGRP)-positive dorsal root sensory axons into the trauma zone, and significantly attenuated astroglial and microglial cell reactions, but induced aberrant sprouting of CGRP-immunoreactive axons in Rexed's lamina III. Differentiated BMSC provided neuroprotection for axotomized rubrospinal neurons and increased the density of rubrospinal axons in the dorsolateral funiculus rostral to the injury site. The present results suggest that BMSC induced along the Schwann cell lineage increase expression of trophic factors and have neuroprotective and growth-promoting effects after spinal cord injury.  相似文献   

10.
11.
Background aimsTransplantation of mesenchymal stromal cells (MSC) derived from bone marrow (BM) or adipose tissue is expected to become a cell therapy for stroke. The present study compared the therapeutic potential of adipose-derived stem cells (ASC) with that of BM-derived stem cells (BMSC) in a murine stroke model.MethodsASC and BMSC were isolated from age-matched C57BL/6J mice. These MSC were analyzed for growth kinetics and their capacity to secrete trophic factors and differentiate toward neural and vascular cell lineages in vitro. For in vivo study, ASC or BMSC were administrated intravenously into recipient mice (1 × 105 cells/mouse) soon after reperfusion following a 90-min middle cerebral artery occlusion. Neurologic deficits, the degree of infarction, expression of factors in the brain, and the fate of the injected cells were observed.ResultsASC showed higher proliferative activity with greater production of vascular endothelial cell growth factor (VEGF) and hepatocyte growth factor (HGF) than BMSC. Furthermore, in vitro conditions allowed ASC to differentiate into neural, glial and vascular endothelial cells. ASC administration showed remarkable attenuation of ischemic damage, although the ASC were not yet fully incorporated into the infarct area. Nonetheless, the expression of HGF and angiopoietin-1 in ischemic brain tissue was significantly increased in ASC-treated mice compared with the BMSC group.ConclusionsCompared with BMSC, ASC have great advantages for cell preparation because of easier and safer access to adipose tissue. Taken together, our findings suggest that ASC would be a more preferable source for cell therapy for brain ischemia than BMSC.  相似文献   

12.
Background aimsThe development of an allogeneic mesenchymal stem cell (MSC) product to treat equine disorders would be useful; however, there are limited in vivo safety data for horses. We hypothesized that the injection of self (autologous) and non-self (related allogeneic or allogeneic) MSC would not elicit significant alterations in physical examination, gait or synovial fluid parameters when injected into the joints of healthy horsesMethodsSixteen healthy horses were used in this study. Group 1 consisted of foals (n = 6), group 2 consisted of their dams (n = 5) and group 3 consisted of half-siblings (n = 5) to group 1 foals. Prior to injection, MSC were phenotyped. Placentally derived MSC were injected into contralateral joints and MSC diluent was injected into a separate joint (control). An examination, including lameness evaluation and synovial fluid analysis, was performed at 0, 24, 48 and 72 h post-injectionResultsMSC were major histocompatibility complex (MHC) I positive, MHC II negative and CD86 negative. Injection of allogeneic MSC did not elicit a systemic response. Local responses such as joint swelling or lameness were minimal and variable. Intra-articular MSC injection elicited marked inflammation within the synovial fluid (as measured by nucleated cell count, neutrophil number and total protein concentration). However, there were no significant differences between the degree and type of inflammation elicited by self and non-self-MSCConclusionsThe healthy equine joint responds similarly to a single intra-articular injection of autologous and allogeneic MSC. This pre-clinical safety study is an important first step in the development of equine allogeneic stem cell therapies.  相似文献   

13.
Li Y  Guo Z  Liu CF  Xing WG  Si TG  Liu F  Guo XY  Xing JZ 《Cryobiology》2012,65(1):56-59
ObjectiveTo analyze the effect of Argon-Helium cryosurgery (AHCS) combined with transcatheter renal arterial embolization (TRAE) on the differentiation of regulatory CD4+ CD25+ T cell (Treg) and its implication in patients with renal carcinoma.MethodsSeventy seven patients are included in the study, and divided into two groups: TRAE group (n = 45, receiving TRAE only) and TRAE + cryoablation group (n = 32, receiving cryoablation 2–3 weeks after TRAE). The percentage of Treg cells and T lymphocyte subsets (CD4+T, CD8+T, and CD4+T/CD8+T) in the peripheral blood is measured by flow cytometry previous to the therapy and 3 months after therapy. Meanwhile, the extent of tumor necrosis is measured by MRI or CT 1 month after therapy.ResultsThe percentages of Treg cells of patients in TRAE + cryoablation group decrease from (6.65 ± 1.22)% to (3.93 ± 1.16)%, (t = 42.768, P < 0.01), and the percentages of CD4+T and CD4+T/CD8+T increase significantly (P < 0.01). However, the results of patients in TRAE group show that the percentages of Treg, CD4+T, CD8+T and CD4+T/CD8+T increase slightly although the differences had no statistical significance (P > 0.05). The tumor necrosis rate of TRAE + cryoablation group is 57.5%, significantly higher than those of TRAE group, which shows 31.6% (t = 6.784, P < 0.01). The median survival duration of the TRAE + cryoablation group is 20 months, significantly longer than that of the TRAE group (χ2 = 7.368, P < 0.01). The decreasing extent of Treg cells is correlated with tumor necrosis rates (r = 0.90, P < 0.01) and life time (r = 0.67, P < 0.01).ConclusionThe therapy of TRAE combined with cryoablation contributes to reduce the percentage of Treg cells and improve the immune situation of patients with renal cell carcinoma, which consequently increase tumor necrosis rate and prolong the patients‘ survival duration.  相似文献   

14.
Background aimsMesenchymal stromal cells (MSC) have recently been identified as a therapeutic option in several clinical conditions. Whereas bone marrow (BM) is considered the main source of MSC (BM-MSC), the invasive technique required for collection and the decline in allogeneic donations call for alternative sources. Human umbilical cord (UC) represents an easily available source of MSC (UC-MSC).MethodsSections of full-term UC were transferred to cell culture flasks and cultured in 5% human platelet lysate (PL)-enriched medium. Neither enzymatic digestion nor blood vessel removal was performed. After 2 weeks, the adherent cells were harvested (P1), replated at low density and expanded for two consecutive rounds (P2 and P3).ResultsWe isolated and expanded MSC from 9/9 UC. UC-MSC expanded with a mean fold increase (FI) of 42 735 ± 16 195 from P1 to P3 in a mean of 29 ± 2 days. By processing the entire cord unit, we theoretically could have reached a median of 9.5 × 1010 cells (ranging from 1.0 × 1010 to 29.0 × 1010). UC-MSC expressed standard surface markers; they contained more colony-forming unit (CFU)-fibroblast (F) and seemed less committed towards osteogenic, chondrogenic and adipogenic lineages than BM-MSC. They showed immunosuppressive properties both in vitro and in an in vivo chronic Graft versus Host disease (cGvHD) mouse model. Both array-Comparative Genomic Hybridization (CGH) analysis and karyotyping revealed no chromosome alterations at the end of the expansion. Animal studies revealed no tumorigenicity in vivo.ConclusionsUC constitute a convenient and very rich source of MSC for the production of third-party ‘clinical doses’ of cells under good manufacturing practice (GMP) conditions.  相似文献   

15.
Jun C  Zhihui Z  Lu W  Yaoming N  Lei W  Yao Q  Zhiyuan S 《Cytotherapy》2012,14(5):529-539
Background aimsThe study objective was to test the ability of canine mesenchymal stromal cells (cMSC) transfected with the mouse hyperpolarization-activated cyclic nucleotide-gated channel 4 (mHCN4) gene to deliver a biologic pacemaker to the canine heart.Methods and ResultscMSC that were transfected by lentiviral vector with the cardiac pacemaker gene mHCN4 expressed high levels of Cs+ -sensitive current (26.4 ± 1.8pA/pF at –140 mV; (n = 17) and were activated in the diastolic potential range with a reversal potential of –29.7 ± 2.5 mV (n = 14), confirming that the expressed current was Funny current (If)-like. Next, 3 × 106 cMSC transfected with either control plasmid or the mHCN4 gene construct were injected subepicardially into the canine right ventricular wall in situ. During sinus arrest, all control hearts had spontaneous atrioventricular node rhythms [rate = 21 ± 5beats per minute (b.p.m.)]. In the mHCN4 group, six of eight animals developed spontaneous ventricular rhythms of right-sided origin (rate = 45 ± 9b.p.m.; P < 0.01). Moreover, immunohistochemical analysis of the injected regions demonstrated neither apoptosis nor cellular or humoral rejection at 2 weeks.ConclusionsThese results demonstrate that genetically modified cMSC can express functional HCN4 channels in vitro and in vivo and represent a novel delivery system for pacemaker genes into the heart.  相似文献   

16.
Li S  Tang D  Xue Z  Zhang Z  Sun X  Liu Y  Dong H  Yin X  Zhang Z 《Life sciences》2011,88(19-20):853-863
AimsThe standardized extract from the leaves of Ginkgo biloba (EGb761) is applied as a phyto-pharmacon in therapy of diverse cardiovascular disorders. However, the effects of EGb761 on bone-marrow mesenchymal stem cells (BMSCs) transplanted into the ischemic myocardium currently remain uncertain. In this study, the dosage-effects of EGb761 on BMSC survival in vitro and in vivo were investigated.Main methodsThe ischemic microenvironment of rat BMSCs was simulated by hypoxia/serum deprivation (SD) and the rat myocardial infarction model was established. The rat BMSCs were cultured under hypoxia/SD or transplanted into the animal ischemic heart. The BMSC apoptosis was determined by FACS and TUNEL assay. Each apoptotic signal molecule's activity was assayed by immunoblot.Key findingsEGb761 showed a biphasic effect on the hypoxia/SD-induced BMSC apoptosis. Low concentration of EGb761 (10–100 μg/ml) aggravated hypoxia/SD-induced apoptosis via Akt inactivation and an enhancement of caspase-9 and caspase-3 expressions, whereas high concentration of EGb761 (500–2000 μg/ml) significantly prevented hypoxia/SD-induced BMSC apoptosis via the activated Akt and the inactivated caspase-9 and caspase-3. The animal study also indicated that the apoptotic index (AI) in the high concentration of EGb761 group was significantly lower than the low concentration of EGb761 group.SignificanceThe biphasic effect of EGb761 is closely related to the PI3K-Akt and caspase-9 signaling pathways. The therapeutic concentration of EGb761 may be one of the vital factors determining the specific action of EGb761 on cell apoptosis. It is of significant clinical implication to investigate the mechanisms of the biphasic effect of EGb761.  相似文献   

17.
BackgroundThere is an urgent need of vascular substitutes (VS) to be used in lower limb revascularization procedures when autologous veins are not available and synthetic prosthesis are contraindicated. Since the mechanical differences with respect to native vessels are determinants of the VS failure, the substitutes should have mechanical properties similar to those of the recipient vessels. The use of cryopreserved arteries (cryografts) could overcome limitations of available VS. These work aims were to characterize (a) native vessels/implanted cryografts mechanical and geometrical coupling, (b) cryografts capability to ensure mismatch levels lesser than those expected for expanded polytetrafluoroethylene (ePTFE), (c) cryografts functional properties considering their histological and ultra-structural characteristics.MethodsInstantaneous pressure (mechano-transducers) and diameter (B-mode echography) were obtained in implanted femoro-popliteal, ileo-femoro-popliteal and axilo-humeral cryografts (n = 8), in femoral arteries from recipients (n = 8), recipient-like (n = 15) and multiorgan donors-like (n = 15) subjects, and in ePTFE segments (n = 10). Calculus: (a) Mechanical parameters: elastic modulus, arterial compliance, distensibility and characteristic impedance; (b) Arterial remodeling: diameter, wall thickness, cross-sectional area and wall-to-lumen ratio; (c) Native vessels/VS coupling. Histological and structural analysis were done in explanted femoro-popliteal and axilo-humeral cryografts (n = 7).ResultsPost-implant the cryografts remodeled. Their stiffness increased and the conduit function diminished. Remodeling resulted in an improvement in native vessels/cryograft coupling, which was always better than native vessels/ePTFE coupling.ConclusionsPost-implant cryograft remodeling improved native vessels/cryografts coupling. Cryografts would have mechanical and geometrical advantages over ePTFE. Anastomotic cryograft remodeling differed from that expected only due to haemodynamic factors. The structural properties of the remodeled cryografts contribute to explain their functional characteristics.  相似文献   

18.
Background aimsPrevious studies have shown that rapid recovery of the absolute lymphocyte count (ALC) is associated with improved transplant outcomes after related and unrelated donor allogeneic stem cell transplantation (allo-SCT). No consistent association has been reported between lymphocyte recovery and transplant outcome after cord blood transplantation (CBT)MethodsWe reviewed the records of 40 consecutive CBT patients at our institution to determine the impact of lymphocyte recovery on transplant outcomeResultsThe majority of patients (83%) received CBT for hematologic malignancies. Patients with ALC ≥150/μL at 30 days post-CBT had decreased non-relapse mortality (NRM) (P = 0.011) and improved survival (P = 0.013) compared with ALC < 150/μL. Patients with ALC < 100/μL at 30 days post-CBT had a significantly higher rate of graft failure than those with ALC ≥100/μL (four of 10 versus one of 29; P = 0.011). ALC was positively correlated with the nucleated cell dose and inversely correlated with the patient's age. There was no relationship between disease risk, type of conditioning regimen, anti-thymocyte globulin and number of cord units on ALC recoveryConclusionsOur results indicate that ALC 30 days post-CBT is a surrogate for engraftment, and that low ALC (<150/μL) identifies an ‘at-risk’ population of patients after CBT. Studies are needed to determine ways to increase ALC cell numbers post-CBT, including ex vivo-expanded natural killer cells using adoptive immunotherapy, which might improve outcome after CBT.  相似文献   

19.
Kim DH  Jeong YS  Chon J  Yoo SD  Kim HS  Kang SW  Chung JH  Kim KT  Yun DH 《Cytokine》2011,55(3):343-346
ObjectivesRecently, a number of evidences have been reported concerning the genetic factor involved in the development of ossification of the posterior longitudinal ligament (OPLL). The purpose of this study was to investigate single nucleotide polymorphisms (SNPs) of the interleukin 15 receptor, alpha (IL15RA) gene as a risk factor in Korean patients with OPLL.DesignTo investigate the genetic association, two coding SNPs (rs2296139, Thr73Thr; rs2228059, Asn182Thr) in IL15RA were genotyped in 166 OPLL patients and 230 control subjects. SNPStats, SNPAnalyzer, and Helixtree programs were used for association analysis.ResultsIn the present study, we found the association between a missense SNP (rs2228059) and the risk of OPLL in codominant (p = 0.0028, OR = 1.58, 95% CI = 1.17–2.14), dominant (p = 0.0071, OR = 1.82, 95% CI = 1.17–2.82), and recessive models (p = 0.036, OR = 1.79, 95% CI = 1.04–3.09). The frequency of rs2228059 allele was significantly associated with the susceptibility of OPLL (p = 0.0043, OR = 1.52, 95% CI = 1.14–2.02). After Bonferroni correction, the missense SNP (rs2228059, Asn182Thr) still had significant correlations (p = 0.0056 in codominant model; p = 0.0142 in dominant model; p = 0.0086 in allele analysis). Haplotype variation in IL15RA was associated with OPLL (global haplotype test, p = 0.025).ConclusionsThese results suggest that IL15RA polymorphism may be associated with the susceptibility of OPLL in Korean population.  相似文献   

20.
Guo Y  Yang T  Lu J  Li S  Wan L  Long D  Li Q  Feng L  Li Y 《Life sciences》2011,88(13-14):598-605
AimsGinsenoside Rb1 could prevent ischemic neuronal death and focal cerebral ischemia, but its roles to liver warm I/R injury remain to be defined. We determined if Rb1 would attenuate warm I/R injury in mice.Main methodsMice were divided into sham, I/R, Rb1 + I/R (Rb1 postconditioning, 20 mg/kg, i.p. after ischemia), sham + L-NAME, I/R + L-NAME, and Rb1 + I/R + L-NAME groups using 60 min of the liver median and left lateral lobes ischemia. Serum levels of alanine aminotransferase (ALT) were measured and morphology changes of livers were evaluated. Contents of nitric oxide (NO) and nitric oxide synthase (NOS), malondialdehye (MDA) and activity of superoxide dismutase (SOD) were measured. Expressions of Akt, p-Akt, iNOS, HIF-1alpha, tumor necrosis factor-a (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) were also determined by western blot or immunohistochemistry.Key findingsRb1 postconditioning attenuated the dramatically functional and morphological injuries. The levels of ALT were significantly reduced in Rb1 group (p < 0.05). Rb1 upregulated the concentrations of NO, iNOS in serum, iNOS, and activity of SOD in hepatic tissues (p < 0.05), while it dramatically reduced the concentration of MDA (p < 0.05). Protein expressions of p-Akt, iNOS and HIF-1alpha were markedly enhanced in Rb1 group. Protein and mRNA expressions of TNF-α and ICAM-1 were markedly suppressed by Rb1 (p < 0.05).SignificanceWe found that Rb1 postconditioning could protect liver from I/R injury by upregulating the content of NO and NOS, and also HIF-1alpha protein expression. These protective effects could be abolished by L-NAME. These findings suggested Rb1 may have the therapeutic potential through ROS-NO-HIF pathway for management of liver warm I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号