首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
High efficiency polyoma DNA transfection of chloroquine treated cells.   总被引:148,自引:18,他引:148       下载免费PDF全文
Chloroquine treatment of rodent cells during the first hours of polyoma DNA transfection increase the fraction of cells expressing viral functions. The effect has been observed after DNA absorption using both the DEAE-dextran and calcium phosphate coprecipitation methods. Exposure to chloroquine increased the proportion of transfected mouse cells to approximately 40%. From a culture of one million such cells, microgram quantities of newly synthesized viral DNA could be isolated. Similarly, the transformation frequency of rat cells following polyoma DNA transfection was approximately 6-fold increased by chloroquine treatment. The effect of the compound was even more pronounced in transfections with linear forms of polyoma DNA, suggesting that chloroquine inhibits degradation of DNA absorbed by the cells.  相似文献   

2.
Control of genetic expression is a critical issue in the field of stem cell biology, where determining a cell fate or reprogramming adult somatic cells into pluripotent cells has become a common experimental practice. In turn, for these cells to have therapeutic clinical potential, techniques for controlling gene expression are needed that minimizes or eliminates the risk of oncogenesis and mutagenesis. Possible routes for achieving this outcome could come in the form of a transient nonviral gene delivery system. In this study, we improved the efficiency of transient gene delivery to differentiating murine embryonic stem (ES) cells via serum starvation for 3 days before transfection. The transient expression of a constitutively‐controlled plasmid increased from ~50% (replated control) to ~83% when transfected after 3 days of serum starvation but decreased to ~28% when transfected after 3 days in normal high serum‐containing media. When probed with a liver‐specific reporter, Cyp7A1, expression increased from ~1.4% (replated control) to ~3.7% when transfected after 3 days of serum starvation but decreased to ~0.7% when transfected after 3 days in high serum‐containing media. Cy3‐tagged oligonucleotides were used to rapidly quantify DNA uptake and predict ultimate transfection efficiency. This study suggests that modifications in media serum levels before transfection can have a profound effect on improving nonviral gene delivery. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.

Background

Gene therapy strategies for the treatment of vascular disease such as the prevention of post‐angioplasty restenosis require efficient, non‐toxic transfection of vascular cells. In vitro studies in these cells contribute to vector development for in vivo use and for the evaluation of genes with therapeutic potential. The aim of this project was to evaluate a novel synthetic vector consisting of a liposome (L), an integrin targeting peptide (I), and plasmid DNA (D), which combine to form the LID vector complex.

Methods

Cultures of porcine smooth muscle cells and endothelial cells were established and then transfected with the LID vector, using the reporter genes luciferase and green fluorescent protein and the metalloprotease inhibitor TIMP‐1.

Results

The LID vector system transfected primary porcine vascular smooth muscle cells and porcine aortic endothelial cells with efficiency levels of 40% and 35%, respectively. By increasing the relative DNA concentration four‐fold, incubation periods as short as 30 min achieved the same levels of luciferase transgene expression as 4 h incubations at lower DNA concentrations. The transfection did not affect cell viability as measured by their proliferative potential. Serum levels of up to 20% in the transfection medium had no adverse affect on the efficiency of transfer and gene expression in either cell type. Transfections with the cDNA for TIMP‐1 produced protein levels that peaked at 130 ng/ml per 24 h and persisted for 14 days at 10 ng/ml per 24 h.

Conclusion

This novel vector system has potential for studies involving gene transfer to cardiovascular cells in vitro and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

4.
Efficient and long-lasting transfection of primary neurons is an essential tool for addressing many questions in current neuroscience using functional gene analysis. Neurons are sensitive to cytotoxicity and difficult to transfect with most methods. We provide a protocol for transfection of cDNA and RNA interference (short hairpin RNA (shRNA)) vectors, using magnetofection, into rat hippocampal neurons (embryonic day 18/19) cultured for several hours to 21 d in vitro. This protocol even allows double-transfection of DNA into a small subpopulation of hippocampal neurons (GABAergic interneurons), as well as achieving long-lasting expression of DNA and shRNA constructs without interfering with neuronal differentiation. This protocol, which uses inexpensive equipment and reagents, takes 1 h; utilizes mixed hippocampal cultures, a transfection reagent, CombiMag, and a magnetic plate; shows low toxicity and is suited for single-cell analysis. Modifications done by our three laboratories are detailed.  相似文献   

5.
We simultaneously tested the transfection efficiency of NT2/D1 and HeLa cells with Lipofectamine (Life Technologies) and Effectene (Qiagen) transfection reagents using the pCH110 eukaryotic assay vector, which contains the lacZ reporter gene. Under our culture conditions for NT2/D1 and HeLa cells, Effectene transfection efficiency could be augmented by simply increasing the amount of plasmid DNA 1.5-3 times above the recommended concentration without any visible cytotoxicity. With the Lipofectamine reagent, optimal transfection efficiency was obtained for both cell lines within the recommended concentrations, but at the top of the range. The results indicate that optimization of the transfection process should include plasmid DNA concentrations above the levels suggested by the manufacturers, in order to accomplish the highest transfection efficiency.  相似文献   

6.
7.
目的:研究麝香水溶物对培养的大鼠神经干细胞的生长、分化和电转染率的影响。方法:在培养基中加入不同浓度的麝香水溶性提取物后,观察大鼠神经干细胞的生长分化情况;利用表达增强型绿色荧光蛋白的质粒pEGFP-C1,对麝香水溶物处理的神经干细胞进行电穿孔转染,调查电转染率。结果:麝香水溶物处理后的大鼠神经干细胞的细胞团分散,神经突起增多、变长,贴壁细胞增加,细胞形态呈多样性。在0.3‰浓度下,神经干细胞有向神经胶质样细胞分化的趋势。对于麝香处理后变化的细胞,再转到正常培养基中后,细胞基本都能恢复到正常的神经干细胞形态,浓度较高(3‰)时,细胞的恢复能力下降,部分细胞因细胞膜受损严重而死亡。电转染结果表明,麝香处理后发生变化的细胞对pEGFP-C1的电转染率明显提高。结论:麝香水溶物能促进大鼠神经干细胞团的分散和细胞贴壁、变形,并有向神经胶质样细胞分化的趋势。同时可以提高神经干细胞对pEGFP-C1的电转染率。  相似文献   

8.
The isolation of neural stem cells from fetal and adult mammalian CNS and the demonstration of functional neurogenesis in adult CNS have offered perspectives for treatment of many devastating hereditary and acquired neurological diseases. Due to this enormous potential, neural stem cells are a subject of extensive molecular profiling studies with a search for new markers and regulatory pathways governing their self-renewal as opposed to differentiation. Several in-depth proteomic studies have been conducted on primary or immortalized cultures of neural stem cells and neural progenitor cells, and yet more remains to be done. Additionally, neurons and glial cells have been obtained from embryonic stem cells and mesenchymal stem cells, and proteins associated with the differentiation process have been characterized to a certain degree with a view to further investigations. This review summarizes recent findings relevant to the proteomics of neural stem cells and discusses major proteins significantly regulated during neural stem cell differentiation with a view to their future use in cell-based regenerative and reparative therapy.  相似文献   

9.
10.
Disguising adult neural stem cells   总被引:2,自引:0,他引:2  
  相似文献   

11.
BACKGROUND: Neurogenesis occurs in defined areas of the adult mammalian brain, including the dentate gyrus of the hippocampus. Rat neural stem/progenitor cells isolated from this region retain their multipotency in vitro and in vivo after grafting into the adult brain. Molecular signalling and lineage selection in these cells may be examined using genetic manipulation. However, valid analysis requires that this manipulation should not affect cellular viability, proliferation or differentiation. METHODS: We screened several transfection protocols to develop a method which met these criteria. We then tested the effects of transfection on viability, proliferation and differentiation into the three neural lineages: neurons, astrocytes and oligodendrocytes. RESULTS: In initial testing, ExGen500 and FuGene6 efficiently transfected adult neural stem/progenitor cells, in vitro. After optimisation, these agents transfected 16% and 11% of cells, respectively. FuGene6-treated cells did not differ from untransfected cells in their viability or rate of proliferation, whereas these characteristics were significantly reduced following ExGen500 transfection. Importantly, neither agent affected the pattern of differentiation following transfection. Both agents could be used to genetically label cells, and track their differentiation into the three neural lineages, after grafting onto ex vivo organotypic hippocampal slice cultures. CONCLUSIONS: These data demonstrate that non-viral transfection may be used to genetically manipulate neural stem/progenitor cells, without adversely affecting their growth or perturbing lineage selection. Such a method is valuable for examining the molecular mechanisms of cell fate determination in vitro. Furthermore, this protocol may be exploited in the development of cell-based gene therapy strategies.  相似文献   

12.
Knowledge of the exact number of viable cells in a given volume of a cell suspension is required for many routine tissue culture manipulations, such as plating cells for immunocytochemistry or for cell transfections. This protocol describes a straightforward and fast method for differentiating between live and dead cells and quantifying the cell concentration and total cell number using a hemacytometer. This procedure first requires detaching cells from a growth surface and resuspending them in media. Next, the cells are diluted in a solution of Trypan blue (ideally to a concentration that will give 20-50 cells per quadrant) and placed in the hemacytometer. Finally, averaging the counts of viable cells in several randomly selected quadrants, dividing the average by the volume of one 1 mm(2) quadrant (0.1 microl) and multiplying by the dilution factor gives the number of cells per l. Multiplying this cell concentration by the total volume in microl gives the total cell number. This protocol describes counting human neural stem/precursor cells (hNSPCs), but can also be used for many other cell types.  相似文献   

13.
神经干细胞研究进展   总被引:8,自引:0,他引:8  
神经干细胞研究是当今生命科学研究的热点之一。神经干细胞是神经系统发育过程中保留下来的具有自我更新和多分化潜能的原始细胞。随着对神经干细胞认识的不断深入,其临床应用前景与价值得到了越来越多研究者的肯定。从神经干细胞的生物学特征、来源、培养鉴定、分化及应用等几个方面对目前的研究做一概述。  相似文献   

14.
The ability to manipulate human neural stem/precursor cells (hNSPCs) in vitro provides a means to investigate their utility as cell transplants for therapeutic purposes as well as to explore many fundamental processes of human neural development and pathology. This protocol presents a simple method of culturing and passaging hNSPCs in hopes of standardizing this technique and increasing reproducibility of human stem cell research. The hNSPCs we use were isolated from cadaveric postnatal brain cortices by the National Human Neural Stem Cell Resource and grown as adherent cultures on flasks coated with fibronectin (Palmer et al., 2001; Schwartz et al., 2003). We culture our hNSPCs in a DMEM:F12 serum-free media supplemented with EGF, FGF, and PDGF and passage them 1:2 approximately every seven days. Using these conditions, the majority of the cells in the culture maintain a bipolar morphology and express markers of undifferentiated neural stem cells (such as nestin and sox2).  相似文献   

15.
16.
The physiological status of an organism is able to influence stem cell behaviour to ensure that stem cells meet the needs of the organism during growth, and in response to injury and environmental changes. In particular, the brain is sensitive to metabolic fluctuations. Here we discuss how nutritional status is able to regulate systemic and local insulin/IGF signalling so as to control aspects of neural stem behaviour. Recent results have begun to reveal how systemic signals are relayed to neural stem cells through local interactions with a glial niche. Although much still remains to be discovered, emerging parallels between the regulation of Drosophila and mammalian stem cells suggest a conserved mechanism for how the brain responds to changes in nutritional state.  相似文献   

17.
Hematopoietic potential of neural stem cells   总被引:1,自引:0,他引:1  
Shih CC  Mamelak A  LeBon T  Forman SJ 《Nature medicine》2002,8(6):535; author reply 536-535; author reply 537
  相似文献   

18.
Zhang QB  Ji XY  Huang Q  Dong J  Zhu YD  Lan Q 《Cell research》2006,16(12):909-915
Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glioma and ultimately yield new approaches to fight this intractable disease. Here, we cultured and purified BTSCs from surgical glioma specimens and NSCs from human fetal brain tissue, and further analyzed their cellular biological behaviors, especially their differentiation property. As expected, NSCs differentiated into mature neural phenotypes. In the same differentiation condition, however, BTSCs exhibited distinguished differences. Morphologically, cells grew flattened and attached for the first week, but gradually aggregated and reformed floating tumor sphere thereafter. During the corresponding period, the expression rate of undifferentiated cell marker CD 133 and nestin in BTSCs kept decreasing, but 1 week later, they regained ascending tendency. Interestingly, the differentiated cell markers GFAP and β-tubulinlII showed an expression change inverse to that of undifferentiated cell markers. Taken together, BTSCs were revealed to possess a capacity to resist differentiation, which actually represents the malignant behaviors of glioma.  相似文献   

19.
A stem cell has three important features. Firstly, the ability of self‐renewal: making identical copies of itself. Secondly, multipotency, generating all the major cell lineages of the host tissue (in the case of embryonic stem cells—pluripotency). Thirdly, the ability to generate/regenerate tissues. Thus, the study of stem cells will help unravel the complexity of tissue development and organisation, and will also have important clinical applications. Neural stem cells (NSCs) are present during embryonic development and in certain regions of the adult central nervous system (CNS). Mobilizing adult NSCs to promote repair of injured or diseased CNS is a promising approach. Since NSCs may give rise to brain tumor, they represent in vitro models for anti‐cancer drug screening. To facilitate the use of NSCs in clinical scenarios, we need to explore the biology of these cells in greater details. One clear goal is to be able to definitively identify and purify NSCs. The neurosphere‐forming assay is robust and reflects the behavior of NSCs. Clonal analysis where single cells give rise to neurospheres need to be used to follow the self‐renewal and multipotency characteristics of NSCs. Neurosphere formation in combination with other markers of NSC behavior such as active Notch signaling represents the state of the art to follow these cells. Many issues connected with NSC biology need to be explored to provide a platform for clinical applications. Important future directions that are highlighted in this review are; identification of markers for NSCs, the use of NSCs in high‐throughput screens and the modelling of the central nervous development. There is no doubt that the study of NSCs is crucial if we are to tackle the diseases of the CNS such as Parkinson's and Alzheimer's. J. Cell. Biochem. 106: 1–6, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.

Background

Adipose stem cells have a strong potential for use in cell-based therapy, but the current nucleofection technique, which relies on unknown buffers, prevents their use.

Results

We developed an optimal nucleofection formulation for human adipose stem cells by using a three-step method that we had developed previously. This method was designed to determine the optimal formulation for nucleofection that was capable of meeting or surpassing the established commercial buffer (Amaxa), in particular for murine adipose stem cells. By using this same buffer, we determined that the same formulation yields optimal transfection efficiency in human mesenchymal stem cells.

Conclusions

Our findings suggest that transfection efficiency in human stem cells can be boosted with proper formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号