首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the course of muscle differentiation, changes in fibre-type population and in myosin composition occur. In this work, the expression of native myosin isoforms in developing fast-twitch (posterior latissimus dorsi; PLD) and slow-tonic (anterior latissimus dorsi; ALD) muscles of the chick was examined using electrophoresis under nondissociating conditions. The major isomyosin of 11-day-old embryonic PLD comigrated with the adult fast myosin FM3. Two additional components indistinguishable from adult fast FM2 and FM1 isomyosins appeared successively during the embryonic development. The relative proportion of these latter isoforms increased with age, and the adult pattern was established by the end of the 1st month after hatching. Between day 11 and day 16 of embryonic development, PLD muscle fibres also contained small amounts of slow isomyosins SM1 and SM2. This synthesis of slow isoforms may be related to the presence of slow fibres within the muscle. At all embryonic and posthatch stages, ALD was composed essentially of slow isomyosins that comigrated with the two slow components SM1 and SM2 identified in adult. Several studies have reported that the SM1:SM2 ratio decreases progressively throughout embryonic and posthatching development, SM2 being predominant in the adult. In contrast, we observed a transient increase in SM1:SM2 ratio at the end of embryonic life. This could reflect a transitional neonatal stage in myosin expression. In addition, the presence in trace amounts of fast isomyosins in developing ALD muscle could be related to the presence of a population of fast fibres within this muscle.  相似文献   

2.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

3.
Antibodies elicited in rabbits against chicken slow skeletal anterior latissimus dorsi and ventricular myosin were analyzed by double immunodiffusion for their ability to react with homologous and heterologous antigen at different stages of immunization (1--12 months). Each anti myosin antiserum formed a single, strong precipitin line with its immunogen after short time of immunization. This reaction was specific for myosin heavy chains as determined by GEDELISA (gel electrophoresis derived enzyme lined immunosorbent assay) test. In rabbits injected with ventricular myosin after long time of immunization a second, fainter precipitin line has generally been observed. The antigenic determinants responsible for this precipitin line have been localized on the light myosin subunits. By comparing the two types of anti myosin antisera with heterologous antigen we have obtained evidence for partial immunological cross-reactivity between slow skeletal and ventricular muscle myosins. In particular, all anti ventricular myosin antisera displayed a marked immunological reactivity with anterior latissimus dorsi myosin whereas most of anti anterior latissimus dorsi myosin antisera showed absence of reciprocity. By means of immunofluorescence and immunoabsorption techniques both common and unique slow skeletal and ventricular antigenic determinants have been demonstrated.  相似文献   

4.
Myosin heavy chains prepared from the pectoralis major and from the posterior latissimus dorsi of the same adult chicken exhibit different peptide maps when cleaved with Staphylococcus aureus V8 protease. These differences were observed at five different enzyme concentrations and in chickens of various strains. The cleavage pattern of pectoralis major myosin heavy chain from different adult chickens was always identical, as was that of posterior latissimus dorsi myosin heavy chain, demonstrating the reproducibility of the technique. However, when RNAs extracted from the pectoralis major and from the posterior latissimus dorsi were translated in a cell-free reticulocyte lysate, the myosin heavy chain encoded by pectoralis major RNA and the myosin heavy chain encoded by posterior latissimus dorsi RNA exhibited identical peptide maps. These results suggest that the different peptide maps of myosin heavy chains from the pectoralis major and posterior latissimus dorsi may arise from posttranslational modifications.  相似文献   

5.
It is well established that a rise in circulating thyroid hormone during the second half of chick embryo development significantly influences muscle weight gain and bone growth. We studied thyroid influence on differentiation in slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) muscles of embryos rendered hypothyroid by hypophysectomy or administration of an anti-thyroid drug. The expression of native myosins and myosin light chains (MLCs) was studied by electrophoretic analysis, and the myosin heavy chain (MHC) was characterized by immunohistochemistry. The first effects of hypothyroid status were observed at day 21 of embryonic development (stage 46 according to Hamburger and Hamilton). Analysis of myosin isoform expression in PLD muscles of hypothyroid embryos showed persistence of slow migrating native myosins and slow MLCs as well as inhibition of neonatal fast MHC expression, indicating retarded differentiation of this muscle. In ALD muscle, hypothyroidism maintained fast embryonic MHC and induced noticeable amounts of fast MLCs, thus delaying slow muscle differentiation. Our results suggest that thyroid hormones play a role in modulating the appearance of neonatal fast MHC and the disappearance of isomyosins transiently present during embryogenesis. However, T3 supplemental treatment would seem to compensate in part for the effects of hypothyroidism induced by hypophysectomy, suggesting that thyroid hormone might interfere with other factors also accounting for the observed effects.  相似文献   

6.
1. Structural and enzymic properties of myosins from atrial and ventricular cardiac muscle of the chicken were investigated and compared with myosins from the fast skeletal pectoralis and the slow skeletal anterior latissimus dorsi muscle. 2. The Ca2+-ATPase activity, both in function of pH and [K+], of atrial myosin closely resembled that of the fast pectoralis myosin, whereas the enzymic properties of ventricular myosin were similar to those of slow skeletal myosin. 3. By sodium dodecyl sulphate polyacrylamide gel electrophoresis on gradient gel and two-dimensional electrophoresis, involving isoelectric focusing in the first dimension and SDS gel electrophoresis in the second dimension, no difference could be demonstrated in the light-chain pattern of atrial and ventricular myosin. Complete identity was also found between anterior latissimus dorsi and cardiac light chains. 4. Electrophoretic analysis of soluble peptides released by tryptic digestion of myosin and electron microscopic study of light meromyosin paracrystals showed significant differences between the heavy chains of atrial and ventricular myosins, as well as between the heavy chains of cardiac and skeletal myosins. 5. The results confirm previous immunochemical findings and provide direct biochemical evidence for the existence of a new, unique type of myosin in the chicken atrial tissue.  相似文献   

7.
Using a two-dimensional electrophoresis technique coupled with sensitive silver staining, we have investigated the chronology of appearance of the myosin light chain and tropomyosin isoforms during early stages of human quadriceps development. Our results show that slow myosin light chains and the slow tropomyosin isoform are not detected at 6 weeks of gestation. These isoforms transiently appear between 12.5 weeks and 15 weeks of gestation and then disappear. The slow myosin light chains are re-expressed at 31 weeks of gestation and the slow tropomyosin isoform later at 36 weeks of gestation, and normally remained expressed into the adulthood. Our study thus reveals a biphasic expression of the slow myosin light chains and the slow tropomyosin isoform in developing human quadriceps muscle.  相似文献   

8.
Myoblasts from 9-day-old quail embryo slow anterior latissimus dorsi (ALD) and fast posterior and latissimus dorsi (PLD) muscles were co-cultured with neurons. The presence of neurons allowed ALD-derived muscle fibres to express characteristic features of a slow muscle (occurrence of alpha' and of beta' fibres and predominance of slow myosin light chains). On the contrary, PLD-derived fibres did not differentiate into normal fast fibres (occurrence of alpha'-like fibres and absence of LC3f). These results are compared with the differentiation of ALD and PLD myoblasts in aneural condition. It is suggested that neurons can modify some phenotypic expression of presumptive slow or fast myoblasts.  相似文献   

9.
Quantitation of myosin in muscle   总被引:3,自引:0,他引:3  
The amount of myosin per gram of cardiac and skeletal muscle was determined in sodium dodecyl sulfate-solubilized tissue homogenates by radioimmunoassay and by isotope dilution. In the rabbit ventricle, there was an average of 27 mg myosin/g wet wt of tissue. In chickens, the myosin content of typical "red" (anterior latissimus dorsi) and "white" (posterior latissimus dorsi) skeletal muscles was higher than that of ventricular muscle, averaging 36 and 48 mg/g of tissue, respectively. The stoichiometry of the heavy and light chains in cardiac myosin was also determined from the quantitative binding of 125I-labeled Coomassie blue to each subunit after separation of the subunits by sodium dodecyl sulfate-gel electrophoresis. With this procedure, we found that the combined light-chain subunits contributed 19% of the myosin mass. After adjustment for the light-chain contribution, the myosin heavy-chain content of the rabbit ventricle averaged 22 mg/g wet wt of tissue.  相似文献   

10.
The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.  相似文献   

11.
Type II myosin, the primary component of the thick filament of muscle fibers, is organized as a dimeric high molecular weight protein, and is composed of a pair of heavy chains (MHC) and two pairs of light chains. Myosin II transforms ATP energy into mechanical force. All type II myosins are conserved proteins but they have two variable regions that are located in different places of the molecule. Myosin molecules are encoded by a multigene family and many isoforms are generated. The expression of myosins depends on the developmental stage and on the type and degree of contractile activity and tissue, therefore several myosin isoforms are found in the same organism. Here we describe the use of different techniques that allowed demonstrating the presence of isoforms of the heavy chain type II myosin of Taenia solium cysticerci (larvae) and tapeworms (adults), a cestode parasite of importance in public health in many developing countries. Myosin was purified and used in comparative proteolytic fragmentation, ATPase activity, detection of antigenic differences and electrophoretic separation. The results obtained showed biochemical and immunochemical differences among cysticerci and tapeworms, and demonstrate the presence of myosin isoforms in T. solium that are probably associated to physiological requirements of each developmental stage.  相似文献   

12.
We investigated the expression of myosin light chains and tropomyosin subunits during chick embryonic development of the anterior (ALD) and posterior (PLD) parts of the latissimus dorsi muscles. As early as day 8 in ovo, both muscles accumulate a common set of myosin light chains (LC) in similar ratios (LC1F: 55 per cent; LC2S: 25 per cent; LC2F: 12 per cent; LC1S: 8 per cent) and a common set of tropomyosin (TM) subunits (beta 2, beta 1, alpha 2F). Later during development, the slow components of the LC regularly disappear in the PLD and the fast components of the LC and the alpha 2FTM disappear in the ALD, so that the adult pattern is almost established at the time of hatching. Thus, early in development, the two muscles accumulate a common set of fast and slow myosin light chains and fast tropomyosin and some isoforms are repressed at a later stage during development. These data might suggest that during development, the regulatory mechanisms of muscle specific isoform expression differ from one contractile protein to another.  相似文献   

13.
Overload hypertrophy of the chicken anterior latissimus dorsi muscle is accompanied by a replacement of one myosin isoenzyme (slow myosin-1, SM1) by another (slow myosin-2, SM2). To investigate the molecular mechanisms by which these changes occur, we measured the fractional synthesis rates (ks) in vivo of individual myosin-heavy-chain isoenzymes, total actin and total protein during the first 72 h of muscle growth. Although the ks of total protein and actin were doubled at 24 h, the ks for SM1 and SM2 were depressed. However, the ks of both isomyosins were nearly tripled by 72 h. Despite the increase in muscle size observed at 72 h, the amount of SM1 was reduced by half, indicating increased degradation of SM1. Results of translation of polyribosomes in vitro paralleled the results obtained in vivo. The proportion of total polyadenylylated mRNA in total RNA was increased at 48 and 72 h, but unchanged at 24 h despite the increase in protein synthesis at 24 h. Nuclease-protection analyses indicate that the level of specific SM1 and SM2 mRNAs change in a reciprocal fashion during overload. We conclude that gene-specific and temporal differences exist in the regulatory mechanisms that control overload-induced muscle growth.  相似文献   

14.
To investigate whether immunocytochemical localization of muscle-specific aldolase can be used for fiber phenotype determination, we produced specific antibodies against the enzyme and studied its distribution in adult chicken skeletal muscles by indirect immunofluorescence microscopy. Monoclonal antibodies against the myosin heavy chains of fast-twitch (MF-14) and slow-tonic (ALD-58) muscle fibers were also used to correlate aldolase levels with the fiber phenotype. The goat anti-aldolase antibody was found to be specific for the A form of aldolase, as evidenced by sodium dodecyl sulfate gel electrophoresis, immunotitration experiments, and immunoblot analysis. The antibody reacted strongly with the fast-twitch myofibers of normal pectoralis and posterior latissimus dorsi muscles; the phenotype of these muscle fibers was confirmed by a positive immunofluorescent reaction after incubation with MF-14 antibody. By contrast, the slow-tonic myofibers of normal anterior latissimus dorsi, which react positively with ALD-58 antibody, reacted weakly with anti-aldolase antibodies. In denervated chicken muscles, reaction to anti-aldolase antibodies was markedly reduced in fast-twitch fibers, although reaction to MF-14 was not diminished. By contrast, in dystrophic muscle, fast-twitch fibers showed reduced reactivity to anti-aldolase and marked to moderate reduction in MF-14 reactivity. Our results show that: (a) in normal muscles, reactivity to anti-aldolase matches the phenotype obtained by using anti-fast or anti-slow myosin heavy chain antibodies, and therefore can serve to identify mature fibers as fast or slow; and (b) in denervated or dystrophic muscles, the intracellular expressions of aldolase and fast-twitch myosin heavy chains are regulated independently.  相似文献   

15.
Summary Sequence comparisons of avian and mammalian skeletal and cardiac myosin heavy-chain isoforms are used to examine the evolutionary relationships of sarcomeric myosin multigene families. Mammalian fast-myosin heavy-chain isoforms forms from different species, with comparable developmental expression, are more similar to each other than they are to other fast isoforms within the same genome. In contrast, the developmentally regulated chicken fast isoforms are more similar to each other than they are to myosin heavy-chain isoforms in other species. Extensive regions of nucleotide identity among the chicken fast myosin heavy chains and in the mouse and rat α- and β-cardiac myosin heavy-chain sequences suggest that geneconversion-like mechanisms have played a major role in the concerted evolution of these gene families. We also conclude that the chicken fast myosin heavy-chain multigene family has undergone recent expansion subsequent to the divergence of birds and mammals and that both the developmental regulation and the specialization of myosin isoforms have likely developed independently in birds and mammals.  相似文献   

16.
Abstract. The two myosin isozymes (SM1 and SM2) of the anterior latissimus dorsi muscle of the chicken change in relative concentration during development. As SM1 decreases from 13 days of embryonic growth through 1 year of adult maturation, SM2 increases. In the adult muscle SM2 accounts for over 95% of the total myosin. The myosin heavy chains of the two isozymes are distinctly different and may be separated from each other by 5% SDS polyacrylamide gel electrophoresis. The faster migrating myosin heavy chain is identified as originating from SM1 and the slower migrating myosin heavy chain from SM2 myosin isozymes. The myosin heavy chains change in relative concentration during development exactly parallel with changes in SM1 and SM2 isozyme levels. Peptide map analysis also reveals that SM1 myosin heavy chains and SM2 myosin heavy chains are distinctly different. When RNA from the ALD muscle is added to reticulocyte lysate protein synthesizing systems the translation products are shown to include both SM1 and SM2 myosin heavy chains. These comigrate exactly on 5% SDS polyacrylamide gels with authentic counterparts from ALD muscle. Finally, when peptide maps of SM1 and SM2 myosin heavy chains synthesized in the reticulocyte lysate are compared they are again found to be distinctly different and each is identical to a peptide map of respective authentic SM1 and SM2 myosin heavy chains. It is concluded that the myosin heavy chains of SM1 and SM2 myosin isozymes of ALD muscle have different primary structures and that they are encoded by two distinctly different mRNAs.  相似文献   

17.
The stoichiometry of the two heavy chains of myosin in smooth muscle was determined by electrophoresing extracts of native myosin and of dissociated myosin on sodium dodecyl sulfate (SDS) 4%-polyacrylamide gels. The slower migrating heavy chain was 3.6 times more abundant in toad stomach, 2.3 in rabbit myometrium, 2.0 in rat femoral artery, 1.3 in guinea pig ileum, 0.93 in pig trachea and 0.69 in human bronchus, than the more rapidly migrating chain. Both heavy chains were identified as smooth muscle myosin by immunoblotting using antibodies to smooth muscle and non-muscle myosin. The unequal proportion of heavy chains suggested the possibility of native isoforms of myosin comprised of heavy-chain homodimers. To test this, native myosin extracts wer electrophoresed on non-dissociating (pyrophosphate) gels. When each band was individually analysed on SDS-polyacrylamide gel the slowest was found to be filamin and the other bands were myosin in which the relative proportion of the heavy chains was unchanged from that found in the original tissue extracts. Since this is incompatible with either a heterodimeric or a homodimeric arrangement it suggests that pyrophosphate gel electrophoresis is incapable of separating putative isoforms of native myosin.  相似文献   

18.
The expression of myosin heavy chain (MHC) and C-protein isoforms has been examined immunocytochemically in regenerating skeletal muscles of adult chickens. Two, five, and eight days after focal freeze injury to the anterior latissimus dorsi (ALD) and posterior latissimus dorsi (PLD) muscles, cryostat sections of injured and control tissues were reacted with a series of monoclonal antibodies previously shown to specifically bind MHC or C-protein isoforms in adult or embryonic muscles. We observed that during the course of regeneration in each of these muscles there was a reproducible sequence of antigenic changes consistent with differential isoform expression for these two proteins. These isoform switches appear to be tissue specific; i.e., the isoforms of MHC and C-protein which are expressed during the regeneration of a "slow" muscle (ALD) differ from those which are synthesized in a regenerating "fast" muscle (PLD). Evidence has been obtained for the transient expression of a "fast-type" MHC and C-protein during ALD regeneration. Furthermore, during early stages of PLD regeneration this muscle contains MHCs which antigenically resemble those found in the pectoralis muscle at embryonic and early posthatch stages of development. Both regenerating muscles express an isoform of C-protein which appears immunochemically identical to that normally expressed in embryonic and adult cardiac muscle. These results support the concept that isoform transitions in regenerating skeletal muscles qualitatively resemble those found in developing muscles but differences may exist in temporal and tissue-specific patterns of gene expression.  相似文献   

19.
Rhodes LD  Grayson TH  Alexander SM  Strom MS 《Gene》2000,250(1-2):97-107
The motor properties of myosin reside in the globular S1 region of the myosin heavy chain (MHC) subunit. All vertebrates express a family of MHC isoforms in skeletal muscle that have a major influence on the mechanical properties of the various fiber types. Differences in molecular composition of S1 among MHC isoforms within a species have not been studied to any great detail. Presently, we have isolated, cloned and sequenced the S1 subunit of four MHC isoforms from skeletal muscle in Rana pipiens that are specifically expressed in four mechanically divergent fiber types. Paired analysis showed that the overall amino acid identity was higher between the three S1 isoforms expressed in twitch fibers than between the twitch and tonic isoforms. Relatedness in amino acid composition was evaluated in regions reported to govern cross-bridge kinetics. Surface loops 1 and 2, thought to influence motor velocity and ATPase, respectively, were both highly divergent between isoforms. However, the divergence in the loops was roughly equal to that of the amino-terminal region, a domain considered less important for motor function. We tested the hypothesis that the loops are more conserved in pairs of isoforms with more similar kinetics. Comparisons including other vertebrate species showed no tendency for loops from pairs with similar kinetics to be more conserved. These data suggest that the overall structure of loops 1 and 2 is not critical in regulating the kinetic properties of R. pipiens S1 isoforms. Cloning of this family of frog S1 isoforms will facilitate future structure/function studies of the molecular basis of variability in myosin cross-bridge kinetics.  相似文献   

20.
Types of myosin light chains and tropomyosins present in various regions and at different developmental stages of embryonic and posthatched chicken breast muscle (pectoralis major) have been characterized by two-dimensional gel electrophoresis. In the embryonic muscle all areas appear to accumulate both slow and fast forms of mysoin light chains in addition to α and β forms of tropomyosin. During development regional differences in myosin and tropomyosin expression become apparent. Slow myosin subunits become gradually restricted to areas of the anterior region of the muscle and finally become localized to a small red strip found on its anterior deep surface. This red region is characterized by the presence of slow and fast myosin light chains, α-fast, α-slow, and β-tropomyosin. In all other areas of the muscle examined only fast myosin light chains, β-tropomyosin and the α-fast form of tropomyosin, are found. In addition, β-tropomyosin also gradually becomes lost in the posterior regions of the developing breast muscle. In the adult, the red strip area represents less than 1% of the total pectoralis major mass and of the myosin extracted from this area approximately 15% was present as an isozyme that comigrated on nondenaturing gels with myosin from a slow muscle (anterior latissimus dorsi). The red region accumulates therefore fast as well as slow muscle myosin. Thus while the adult chicken pectoralis major is over 99% fast white muscle, the embryonic muscle displays a significant and changing capacity to accumulate both fast and slow muscle peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号