首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many recombinant eukaryotic proteins tend to form insoluble aggregates called inclusion bodies, especially when expressed in Escherichia coli. We report the first application of the technique of three-phase partitioning (TPP) to obtain correctly refolded active proteins from solubilized inclusion bodies. TPP was used for refolding 12 different proteins overexpressed in E. coli. In each case, the protein refolded by TPP gave either higher refolding yield than the earlier reported method or succeeded where earlier efforts have failed. TPP-refolded proteins were characterized and compared to conventionally purified proteins in terms of their spectral characteristics and/or biological activity. The methodology is scaleable and parallelizable and does not require subsequent concentration steps. This approach may serve as a useful complement to existing refolding strategies of diverse proteins from inclusion bodies.  相似文献   

2.
Yang Z  Zhang L  Zhang Y  Zhang T  Feng Y  Lu X  Lan W  Wang J  Wu H  Cao C  Wang X 《PloS one》2011,6(7):e22981
The production of recombinant proteins in a large scale is important for protein functional and structural studies, particularly by using Escherichia coli over-expression systems; however, approximate 70% of recombinant proteins are over-expressed as insoluble inclusion bodies. Here we presented an efficient method for generating soluble proteins from inclusion bodies by using two steps of denaturation and one step of refolding. We first demonstrated the advantages of this method over a conventional procedure with one denaturation step and one refolding step using three proteins with different folding properties. The refolded proteins were found to be active using in vitro tests and a bioassay. We then tested the general applicability of this method by analyzing 88 proteins from human and other organisms, all of which were expressed as inclusion bodies. We found that about 76% of these proteins were refolded with an average of >75% yield of soluble proteins. This "two-step-denaturing and refolding" (2DR) method is simple, highly efficient and generally applicable; it can be utilized to obtain active recombinant proteins for both basic research and industrial purposes.  相似文献   

3.
Availability of highly purified native beta-glucosidase Zm-p60.1 in milligram quantities was a basic requirement for analysis of structure-function relationships of the protein. Therefore, Zm-p60.1 was overexpressed to high levels as a fusion protein with a hexahistidine tag, (His)(6)Zm-p60.r, in Escherichia coli, resulting, however, in accumulation of most of the protein in insoluble inclusion bodies. Native (His)(6)Zm-p60.r was then purified either from the bacterial lysate soluble fraction or from inclusion bodies. In the first case, a single-step purification under native conditions based on immobilized metal affinity chromatography (IMAC) was developed. In the second case, a single-step purification protocol under denaturing conditions followed by IMAC-based matrix-assisted refolding was elaborated. The efficiency of the native protein purification from soluble fraction of bacterial homogenate was compared to the feasibility of purification and renaturation of the protein from inclusion bodies. Gain of authentic biological activity and quaternary structure after the refolding process was confirmed by K(m) determination and electrophoretic mobility under native conditions. The yield of properly refolded protein was assessed based on the specific activity of the refolded product.  相似文献   

4.
Cationic cell wall peroxidase (CWPO_C) from poplar tree (Populus alba L) was heterologously expressed in Escherichia coli as an inclusion body. The insoluble inclusion body was solubilized and reactivated via a refolding procedure. The condition for this procedure was optimized by varying the refolding pH, and the concentrations of the oxidizing agent (GSSG), denaturing agent (GndCl), and hemin, respectively. The optimal conditions for refolding CWPO_C were 100 mM Tris-HCl at pH 8.5, 0.6mM GSSG, 5 μM hemin, 0.6 M GndCl and 5 mM CaCl?. The fact that the absorbance spectrum was identical to that of wild CWPO_C from poplar tree suggests that the protein folding, heme insertion and iron coordination were correctly archived. The binding affinity and turnover rate values of refolded CWPO_C were compared with those of HRP_C. k(cat)/K(m) for sinapyl alcohol of CWPO_C was over 170 times higher than that of HRP_C, on the while k(cat)/K(m) for coniferyl alcohol showed similar values for both peroxidase. The kinetic parameters showed that refolded CWPO_C possesses a very unique property of S-peroxidase, preferentially oxidizes sinapyl alcohol rather than coniferyl alcohol. The successful expression of CWPO_C in E. coli provides a valuable tool to elucidate the structure and functional relationship of S-peroxidase, which plays an important role in the lignification of angiosperm woody plant cell walls.  相似文献   

5.
Enzymatically active Delta(5)-3-ketosteroid isomerase (KSI) protein with a C-terminus his(6)-tag was produced following insoluble expression using Escherichia coli. A simple, integrated process was used to extract and purify the target protein. Chemical extraction was shown to be as effective as homogenization at releasing the inclusion body proteins from the bacterial cells, with complete release taking less than 20 min. An expanded bed adsorption (EBA) column utilizing immobilized metal affinity chromatography (IMAC) was then used to purify the denatured KSI-(His(6)) protein directly from the chemical extract. This integrated process greatly simplifies the recovery and purification of inclusion body proteins by removing the need for mechanical cell disruption, repeated inclusion body centrifugation, and difficult clarification operations. The integrated chemical extraction and EBA process achieved a very high purity (99%) and recovery (89%) of the KSI-(His(6)), with efficient utilization of the adsorbent matrix (9.74 mg KSI-(His(6))/mL adsorbent). Following purification the protein was refolded by dilution to obtain the biologically active protein. Seventy-nine percent of the expressed KSI-(His(6)) protein was recovered as enzymatically active protein with the described extraction, purification, and refolding process. In addition to demonstrating the operation of this intensified inclusion body process, a plate-based concentration assay detecting KSI-(His(6)) is validated. The intensified process in this work requires minimal optimization for recovering novel his-tagged proteins, and further improves the economic advantage of E. coli as a host organism.  相似文献   

6.
Introduction and expression of foreign genes in bacteria often results accumulation of the foreign protein(s) in inclusion bodies (IBs). The subsequent processes of refolding are slow, difficult and often fail to yield significant amounts of folded protein. RHG1 encoded by rhg1 was a soybean (Glycine max L. Merr.) transmembrane receptor-like kinase (EC 2.7.11.1) with an extracellular leucine-rich repeat domain. The LRR of RHG1 was believed to be involved in elicitor recognition and interaction with other plant proteins. The aim, here, was to express the LRR domain in Escherichia coli (RHG1-LRR) and produce refolded protein. Urea titration experiments showed that the IBs formed in E. coli by the extracellular domain of the RHG1 protein could be solubilized at different urea concentrations. The RHG1 proteins were eluted with 1.0-7.0M urea in 0.5M increments. Purified RHG1 protein obtained from the 1.5 and 7.0M elutions was analyzed for secondary structure through circular dichroism (CD) spectroscopy. Considerable secondary structure could be seen in the former, whereas the latter yielded CD curves characteristic of denatured proteins. Both elutions were subjected to refolding by slowly removing urea in the presence of arginine and reduced/oxidized glutathione. Detectable amounts of refolded protein could not be recovered from the 7.0M urea sample, whereas refolding from the 1.5M urea sample yielded 0.2mg/ml protein. The 7.0M treatment resulted in the formation of a homogenous denatured state with no apparent secondary structure. Refolding from this fully denatured state may confer kinetic and/or thermodynamic constraints on the refolding process, whereas the kinetic and/or thermodynamic barriers to attain the folded conformation appeared to be lesser, when refolding from a partially folded state.  相似文献   

7.
Zymomonas mobilis levansucrase was overproduced by the fed-batch culture of recombinant Escherichia coli harboring a novel expression system that is constitutively expressed by the promoter from the Rahnella aquatilis levansucrase gene. Most of the levansucrase was produced as inclusion bodies in the bacterial cytoplasm, accounting for approximately 20% of the total cellular protein. Refolding after complete denaturation by high concentrations of urea or guanidine hydrochloride was not successful, resulting in large amounts of insoluble aggregates. During the development of the refolding method, it was found that direct solubilization of the inclusion bodies with Triton X-100 reactivated the enzyme, with a considerable refolding efficiency. About 65% of inclusion body levansucrase was refolded into active levansucrase in the renaturation buffer containing 4% (v/v) Triton X-100. The in vitro refolded enzyme was purified to 95% purity by single-step DEAE-Sepharose ion exchange chromatography. Triton X-100 was removed by this ion exchange chromatography.  相似文献   

8.
以PCR方法从克隆的EGFR胞外区cDNA中扩增编码EGFR-L2结构域的DNA片段,在其3′端加入编码His6标签的序列,与pET-3c连接构建EGFR-L2原核表达载体。该蛋白在大肠杆菌BL21(DE3)中获得高效表达,免疫印迹分析表明表达产物全部以包涵体形式存在,分步透析法和稀释法都不能获得可溶性复性产物,而Ni2+-NTA柱上复性法不仅能够获得可溶性的EGFR-L2蛋白,而且产物同时得到高度纯化,纯度>95%,复性的EGFR-L2与其配基EGF具有特异性的结合活性,但亲和力较低。这表明His6标签不但便于纯化目标蛋白,而且可利用Ni2+-NTA柱进行柱上复性,适用于不易通过常规方法复性的重组蛋白的制备。  相似文献   

9.
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents.  相似文献   

10.

Background:

Recombinant proteins overexpressed in E. coli are usually deposited in inclusion bodies. Cysteines in the protein contribute to this process. Inter- and intra- molecular disulfide bonds in chitinase, a cysteine-rich protein, cause aggregation when the recombinant protein is overexpressed in E. coli. Hence, aggregated proteins should be solubilized and allowed to refold to obtain native- or correctly- folded recombinant proteins.

Methods:

Dilution method that allows refolding of recombinant proteins, especially at high protein concentrations, is to slowly add the soluble protein to refolding buffer. For this purpose: first, the inclusion bodies containing insoluble proteins were purified; second, the aggregated proteins were solubilized; finally, the soluble proteins were refolded using glutathione redox system, guanidinium chloride, dithiothreitol, sucrose, and glycerol, simultaneously.

Results:

After protein solubilization and refolding, SDS-PAGE showed a 32 kDa band that was recognized by an anti-chitin antibody on western blots.

Conclusions:

By this method, cysteine-rich proteins from E. coli inclusion bodies can be solubilized and correctly folded into active proteins.Key Words: Chitinase, Cysteine-rich proteins, Protein refolding, Protein solubilization  相似文献   

11.
Hsp-antigen fusion and their use for immunization   总被引:6,自引:0,他引:6  
Immunization with antigenic peptide non-covalently associated with HSP elicits the peptide specific CD8+T cell response. The evidence encourages us to test the vaccination effect of recombinant HSP to which antigenic peptides are genetically fused. In the fusion protein, there should be no empty HSP molecules that failed to associate with the peptide of interest, like in vitro reconstitution method, therefore, promising effect may be easily obtained. Recombinant proteins expressed in Escherichia coli often form inclusion bodies and are thereby obtained as insoluble proteins or as proteins lacking their original functions. We describe here a simple and rapid refolding method of histidine-tagged recombinant hsp70/hsp70-peptide complex using a Ni(2+)-agarose column chromatography, without taking a process of dialysis to remove denaturants. The hsp70(hsp70-peptide complex) expressed in E. coli as a form of inclusion body was solubilized in 8 M urea containing buffer and applied to a Ni(2+)-agarose column. The bound hsp70 was refolded on the column by quick removal of urea with urea-free buffer and eluted with a denaturant-free and imidazole-containing buffer. The purified hsp70 was homogeneous and soluble. In addition, it had a very high ATPase activity and strong CTL inducing activity, whereas hsp70 prepared by conventional dialysis method had a negligible ATPase activity. This simple and rapid refolding method may provide a general method for a restoration of function (and/or immunization effect) and solubility of histidine-tagged recombinant HSP.  相似文献   

12.
大肠杆菌高密度发酵表达肠激酶轻链融合蛋白DsbA-rEKL,主要以包涵体形式存在。包涵体经4mol/L尿素和0.5%TritonX-100洗涤,以6mol/L盐酸胍、100mmol/LDTT溶解,在胱氨酸存在下,以脉冲加样方式复性。融合蛋白复性在6mmol/L胱氨酸存在下、脉冲加量0.03mg/mL和复性终蛋白浓度0.3mg/mL为最佳复性方案。复性的融合蛋白加2mmol/LCaCL2后快速自切。经IDA-Sepharose及Q-Sepharose纯化,rEKL纯度可达95%以上,可高效酶切重组瑞特普酶融合蛋白Trx-rPA。实现了大规模生产rEKL,每升发酵液经复性及纯化后,可得rEKL60mg/L以上,使以融合蛋白表达rPA等药用蛋白成为现实。  相似文献   

13.
将尖吻蝮蛇毒酸性磷脂酶 A2 I( A.a A P L A2 I) 的基因克隆至表达载体p B L M V L2 , 在大肠杆菌 R R1 中成功表达。表达产物 A.a A P L A2 I约占细菌蛋白质总量的30 % , 以包含体的形式存在。纯化包含体后, 将产物变性、复性, 然后用 F P L C Superose T M12 纯化, 产物经过 S D S P A G E 检测只有单一条带。对表达的 A.a A P L A2 I进行了酶活性、抑制血小板聚集活性和溶血活性的测定。结果显示, 表达的 A.a A P L A2 I的酶活性同变性后复性江浙蝮蛇酸性磷脂酶 A2( A P L A2) 的酶活性相近, 既具有抑制血小板聚集活性也具有溶血活性。最后对磷脂酶 A2( P L A2) 的结构与这些活性的关系进行了讨论  相似文献   

14.
目的:旨在建立耐低温革兰氏阴性菌外膜蛋白体外折叠体系,为膜蛋白合成耐低温机制提供理论基础。方法:以包涵体的形式在大肠杆菌中过量表达了来源于耐低温希瓦氏菌的OmpA同源外膜蛋白Omp74的全蛋白质和N端跨膜结构域,纯化包涵体后,用高浓度尿素或强阴离子表面活性剂溶液溶解包涵体,以非离子表面活性剂为折叠介质,建立该外膜蛋白的体外折叠体系,同时以大肠杆菌的OmpA作为对照进行了比较研究。结果:与OmpA相比,Omp74体外折叠受温度影响较小,低浓度的阴离子表面活性剂能促Omp74的折叠,但对OmpA的折叠没有影响;C端结构域抑制Omp74在表面活性剂中的折叠;Omp74在0.5%的月桂酰基麦芽糖苷(DDM)和0.4%的十二烷基肌氨酸钠的混合溶液中能达到接近100%的折叠效率。  相似文献   

15.
A human-derived single-chain Fv (scFv) antibody fragment specific against human CTLA4 (CD152) was produced at high level in Escherichia coli. The scFv gene was cloned from a phagemid to the expression vector pQE30 with a N-terminal 6His tag fused in-frame, and expressed as a 29 kDa protein in E. coli as inclusion bodies. The inclusion body of scFv was isolated from E. coli lysate, solubilized in 8M urea with 10mM dithiothreitol, and purified by ion-exchange chromatography. Method for in vitro refolding of the scFv was established. The effects of refolding buffer composition, protein concentration and temperature on the refolding yield were investigated. The protein was renatured finally by dialyzing against 3mM GSH, 1mM GSSG, 150 mM NaCl, 1M urea, and 50 mM Tris-Cl (pH 8.0) for 48 h at 4 degrees C, and then dialyzed against phosphate-buffered saline (pH 7.4) to remove remaining denaturant. This refolding protocol generated up to a 70% yield of soluble protein. Soluble scFv was characterized for its specific antigen-binding activity by indirect cellular ELISA. The refolded scFv was functionally active and was able to bind specifically to CTLA4 (CD152). The epitopes recognized by refolded anti-CTLA4 scFv do not coincide with those epitopes recognized by CD80/CD86.  相似文献   

16.
尖吻蝮蛇毒碱性磷脂酶A2的表达及其生化特征   总被引:3,自引:0,他引:3  
将尖吻蝮蛇毒碱性磷脂酶A2 (A .aBPLA2 )基因克隆至温敏表达载体 pBLMVL2 ,在大肠杆菌RR1中成功诱导表达 .表达产物A .aBPLA2 约占细菌蛋白质总量的 2 0 % ,并以包涵体的形式存在 .纯化包涵体后 ,将产物变性、复性 ,然后用FPLCSuperoseTM12纯化 ,产物经过SDS 聚丙烯酰胺凝胶电泳检测只有单一条带 .对纯化后的表达A .aBPLA2 进行了酶活性、抑制血小板聚集活性和溶血活性的测定 .结果显示 ,表达A .aBPLA2的酶活性与变性后复性江浙蝮蛇酸性磷脂酶A2 酶活性相近 ,具有类似变性后复性江浙蝮蛇碱性磷脂酶A2 的溶血活性 ,没有抑制血小板聚集活性 .最后对磷脂酶A2 的结构与这些活性的关系进行了讨论  相似文献   

17.
Recombinant human interleukin-6 (hIL-6), a pleiotropic cytokine containing two intramolecular disulfide bonds, was expressed in Escherichia coli as an insoluble inclusion body, before being refolded and purified in high yield providing sufficient qualities for clinical use. Quantitative reconstitution of the native disulfide bonds of hIL-6 from the fully denatured E. coli extracts could be performed by glutathione-assisted oxidation in a completely denaturating condition (6M guanidinium chloride) at protein concentrations higher than 1 mg/mL, preventing aggregation of reduced hIL-6. Oxidation in 6M guanidinium chloride (GdnHCl) required remarkably low concentrations of glutathione (reduced form, 0.01 mM; oxidized form, 0.002 mM) to be added to the solubilized hIL-6 before the incubation at pH 8.5, and 22 degrees C for 16 h. After completion of refolding by rapid transfer of oxidized hIL-6 into acetate buffer by gel filtration chromatography, residual contaminants including endotoxin and E. coli proteins were efficiently removed by successive steps of chromatography. The amount of dimeric hIL-6s, thought to be purification artifacts, was decreased by optimizing the salt concentrations of the loading materials in the ion-exchange chromatography, and gradually removing organic solvents from the collected fractions of the preparative reverse-phase HPLC. These refolding and purification processes, which give an overall yield as high as 17%, seem to be appropriate for the commercial scale production of hIL-6 for therapeutic use.  相似文献   

18.
Preparative protein refolding   总被引:33,自引:0,他引:33  
The rapid provision of purified native protein underpins both structural biology and the development of new biopharmaceuticals. The dominance of Escherichia coli as a cellular biofactory depends on technology for solubilizing and refolding proteins that are expressed as insoluble inclusion bodies. Such technology must be scale invariant, easily automated, generic for a broad range of similar proteins and economical. Refolding methods relying on denaturant dilution and column-based approaches meet these criteria. Recent developments, particularly in column-based methods, promise to extend the range of proteins that can be refolded successfully. Developments in preparing denatured purified protein and in the analysis of protein refolding products promise to remove bottlenecks in the overall process. Combined, these developments promise to facilitate the rapid and automated determination of appropriate refolding conditions and to simplify scale-up.  相似文献   

19.
This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations in an intensified process used to recover purified and biologically active proteins from inclusion bodies expressed in E. coli. Delta(5)-3-Ketosteroid isomerase with a C-terminal hexahistidine tag was expressed as inclusion bodies in the cytoplasm of E. coli. Chemical extraction was used to disrupt the host cells and simultaneously solubilize the inclusion bodies, after which EBA utilizing immobilized metal affinity interactions was used to purify the polyhistidine-tagged protein. Adsorptive refolding was then initiated in the column by changing the denaturant concentration in the feed stream from 8 to 0 M urea. Three strategies were tested for performing the refolding step in the EBA column: (i) the denaturant was removed using a step change in feed-buffer composition, (ii) the denaturant was gradually removed using a gradient change in feed-buffer composition, and (iii) the liquid flow direction through the column was reversed and adsorptive refolding performed in the packed bed. Buoyancy-induced mixing disrupted the operation of the expanded bed when adsorptive refolding was performed using either a step change or a rapid gradient change in feed-buffer composition. A shallow gradient reduction in denaturant concentration of the feed stream over 30 min maintained the stability of the expanded bed during adsorptive refolding. In a separate experiment, buoyancy-induced mixing was completely avoided by performing refolding in a settled bed, which achieved comparable yields to refolding in an expanded bed but required a slightly more complex process. A total of 10% of the available KSI-(His(6)) was recovered as biologically active and purified protein using the described purification and refolding process, and the yield was further increased to 19% by performing a second iteration of the on-column refolding operation. This process should be applicable for other polyhistidine tagged proteins and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution.  相似文献   

20.
Tandem radial flow anion- and cation-exchange columns were used to partially purify and concentrate a dilute recombinant protein that had been refolded in vitro after production as insoluble inclusion bodies in E. coli. The refolded sample was first passed through a Q-Sepharose Fast Flow column in order to remove the majority of E. coli contaminating proteins and endotoxins, then purified on an S-Sepharose Fast Flow column connected to the outlet of the Q-Sepharose column. This tandem arrangement enabled the rapid processing of multiple preparations of refolded material during production method development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号