首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence and particle association of various hydrolytic enzymes in Naegleria fowleri has been studied in whole cell extracts of trophozoites in an effort to establish authentic markers for surface membrane and lysosomal components. Evidence from the experiments reported here indicates that in N. fowleri a) acid proteinase, N-acetylglucosaminidase, and acid phosphatase are associated with cytoplasmic granules closely resembling lysosomes; b) 5'-nucleotidase is associated with the surface membrane, probably on the external surface; c) aspartate aminotransferase is associated with mitochondria; d) a-D-glucosidase and an aminopeptidase have bimodal distributions, activity being associated with both the surface membrane and lysosomal particles.  相似文献   

2.
Pathogenic Naegleria fowleri amebae are resistant to the lytic effects of serum complement. The presence of surface glycoproteins or removal of the membrane attack complex (MAC) of complement from the cell surface by vesiculation serve to protect the amebae from complement lysis. The specific mediators important in stimulating complement resistance are not defined. These studies were undertaken to examine the effect of Ca(2+) ions in initiating complement resistance of N. fowleri in contrast to non-pathogenic complement-sensitive N. gruberi. Chelation of extracellular calcium with ethylene glycol tetraacetic acid (EGTA) or chelation of intracellular calcium with 1,2-bis-(O-Aminophenoxy) ethane-N,N,N,N tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM) increased complement lysis of N. fowleri. Chelation of calcium ions did not affect complement sensitivity of N. gruberi. Increased lysis of ionomycin-treated N. fowleri was detected after exposure to serum complement, suggesting that a threshold level of Ca(2+) mediates complement resistance before survival mechanisms are overwhelmed and lysis occurs. A differential influx of Ca(2+) ions occurred in fura-2 labeled N. fowleri after deposition of complement component C9 to form the MAC complex on the cell surface in comparison to N. gruberi. These studies suggest that Ca(2+) ions influence complement resistance in N. fowleri but do not play a role in altering the sensitivity of N. gruberi to complement.  相似文献   

3.
Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D.  相似文献   

4.
Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.  相似文献   

5.
Ultrastructure of Naegleria fowleri enflagellation.   总被引:3,自引:2,他引:1       下载免费PDF全文
Amoebae of Naegleria fowleri nN68 became elongated flagellated cells 150 to 180 min after subculture to non-nutrient buffer. N. fowleri NF69 did not become elongated or flagellated under these conditions. Electron microscopic examination of N. fowleri confirmed that it is a typical eucaryotic protist with a distinct nuclear envelope and prominent nucleolus, numerous vacuoles and cytoplasmic inclusions, pleomorphic mitochondria, and some rough endoplasmic reticulum. During incubation in non-nutrient buffer, both strains lost ultraviolet-absorbing material to the medium, and the number of vacuoles decreased. In strain nN68, basal bodies, a rootlet, and flagella are formed quickly after an initial lag of 90 min. Initially, the rootlet is not associated with the nucleus but they become associated subsequent at the leading end of the elongated cell. In elongated cells, the rootlet lies in a furrow or groove extending the length of the nucleus. Flagella of N. fowleri nN68 exhibit the typical 9 + 2 arrangement of filaments and are surrounded by a sheath which is continuous with the plasma membrane. The enflagellation process in N. fowleri can be manipulated reproducibly.  相似文献   

6.
Summary We have used quantitative immunoelectronmicroscopy to compare thein situ localization of acid -glucosidase, lysosomal acid phosphatase, -hexosaminidase and glucocerebrosidase in intestinal epithelial cells of the human duodenum. Differences between these four lysosomal enzymes were observed with respect to their presence at the apical cell surface. Transport to the apical membrane seems to be a more important intracellular route for lysosomal acid phosphatase and acid -glucosidase than it is for -hexosaminidase. The membrane associated lysosomal enzyme glucocerebrosidase is not transported to the microvilli. The studies emphasize that lysosomal enzyme transport pathways are enzyme and cell type specific.  相似文献   

7.
Human lysosome membrane glycoprotein h-lamp-1 is a highly N-glycosylated protein found predominantly in lysosomes, with low levels present at the cell surface. The signal required for delivery of h-lamp-1 to lysosomes was investigated by analyzing the intracellular distribution of h-lamp-1 with altered amino acid sequences expressed from mutated cDNA clones. A cytoplasmic tail tyrosine residue found conserved in chicken, rodent, and human deduced amino acid sequences was discovered to be necessary for efficient lysosomal transport of h-lamp-1 in COS-1 cells. In addition, the position of the tyrosine residue relative to the membrane and carboxyl terminus also determined lysosomal expression. Supplanting the wild-type h-lamp-1 cytoplasmic tail onto a cell surface reporter glycoprotein was sufficient to cause redistribution of the chimera to lysosomes. A similar chimeric protein replacing the cytoplasmic tyrosine residue with an alanine was not expressed in lysosomes. Altered proteins that were not transported to lysosomes were found to accumulate at the cell surface, and unlike wild-type lysosomal membrane glycoproteins, were unable to undergo endocytosis. These data indicate that lysosomal membrane glycoproteins are sorted to lysosomes by a cytoplasmic signal containing tyrosine in a specific position, and the sorting signal may be recognized both in the trans-Golgi network and at the cell surface.  相似文献   

8.
Summary Salla disease is an inherited lysosomal storage disorder caused by accumulation of free sialic acid in the lysosomes. Lamp genes, lamp A and lamp B (lysosome associated membrane proteins), are the first known genes encoding for human lysosomal membrane proteins. Absence of linkage in a large group of families shows that lamp genes are not involved in Salla disease. The lamp genes were localized, using Southern hybridization in hamster — human hybrid cell panels, to chromosomes 13 (lamp A) and X (lamp B).  相似文献   

9.
A significant decrease in total carbohydrates and particularly in mannose, galactose and sialic acid has been observed in vitamin A-deficient rat liver lysosomal membrane. These alterations adversely affect the membrane permeability and structure-linked latency of the lysosomal enzymes.Significant reduction in the pH-dependent in vitro binding of the lysosomal arylsulfatase B to the highly purified membrane has been observed in vitamin A deficiency. This is attributed to the decrease in electro-negativity, mainly due to the observed reduction in negatively-charged sialic acid residues on the outer side of the membrane.Similar reduction in sialic acid content on the inner side of the membrane affects the microenvironment in the lysosomes. Intralysosomal pH, measured by computing the proteolytic activity of lysed lysosomes and of phagolysosomes, endocytosed with denatured 131I-labelled human serum albumin, is slightly but consistently higher in vitamin A-deficient groups compared to that in control one. This is reflected in the low rate of degradation of the entrapped proteins in vitamin A deficiency.The possible physiological significance of the observations is discussed with special reference to the loss of surface carbohydrates, particularly sialic acid, in vitamin A-deficient rats.  相似文献   

10.
The physical state of the lysosomal membrane was modulated with the membrane fluidizers n-propanol and n-octanol and with the membrane rigidifiers cholesteryl hemisuccinate and cholesterol. Membrane fluidity was examined by the steady-state fluorescence anisotropy of 2-(9-anthroyloxy) palmitic acid and 16-(9-anthroyloxy) palmitic acid. Fluidizing the membranes at the surface and center areas increased the proton permeability coefficient by 92.8 and 18.0%, respectively. Rigidifying the membranes at the surface and center areas decreased the coefficient by 68.2 and 40.2%, respectively. Proton leakage of the lysosomes increased and decreased similar to the coefficient changes with the treatments. The results indicate that lysosomal proton permeability is affected by its membrane's physical state, and the physical state of the membrane surface area affects the proton permeability more markedly. The proton permeability coefficient of liposomes was similar to that of lysosomes, suggesting that efflux of lysosomal protons might occur through the lipid part of the bilayer but not transmembrane proteins.  相似文献   

11.
Hex (beta-hexosaminidase) is a soluble glycohydrolase involved in glycoconjugate degradation in lysosomes, however its localization has also been described in the cytosol and PM (plasma membrane). We previously demonstrated that Hex associated with human fibroblast PM as the mature form, which is functionally active towards G(M2) ganglioside. In the present study, Hex was analysed in a lysosomal membrane-enriched fraction obtained by purification from highly purified human placenta lysosomes. These results demonstrate the presence of mature Hex associated with the lysosomal membrane and displaying, as observed for the PM-associated form, an acidic optimum pH. When subjected to sodium carbonate extraction, the enzyme behaved as a peripheral membrane protein, whereas Triton X-114 phase separation confirmed its partially hydrophilic nature, characteristics which are shared with the PM-associated form of Hex. Moreover, two-dimensional electrophoresis indicated a slight difference in the pI of beta-subunits in the membrane and the soluble forms of the lysosomal Hex. These results reveal a new aspect of Hex biology and suggest that a fully processed membrane-associated form of Hex is translocated from the lysosomal membrane to the PM by an as yet unknown mechanism. We present a testable hypothesis that, at the cell surface, Hex changes the composition of glycoconjugates that are known to be involved in intercellular communication and signalling.  相似文献   

12.
DIRC2 (Disrupted in renal carcinoma 2) has been initially identified as a breakpoint-spanning gene in a chromosomal translocation putatively associated with the development of renal cancer. The DIRC2 protein belongs to the MFS (major facilitator superfamily) and has been previously detected by organellar proteomics as a tentative constituent of lysosomal membranes. In the present study, lysosomal residence of overexpressed as well as endogenous DIRC2 was shown by several approaches. DIRC2 is proteolytically processed into a N-glycosylated N-terminal and a non-glycosylated C-terminal fragment respectively. Proteolytic cleavage occurs in lysosomal compartments and critically depends on the activity of cathepsin L which was found to be indispensable for this process in murine embryonic fibroblasts. The cleavage site within DIRC2 was mapped between amino acid residues 214 and 261 using internal epitope tags, and is presumably located within the tentative fifth intralysosomal loop, assuming the typical MFS topology. Lysosomal targeting of DIRC2 was demonstrated to be mediated by a N-terminal dileucine motif. By disrupting this motif, DIRC2 can be redirected to the plasma membrane. Finally, in a whole-cell electrophysiological assay based on heterologous expression of the targeting mutant at the plasma membrane of Xenopus oocytes, the application of a complex metabolic mixture evokes an outward current associated with the surface expression of full-length DIRC2. Taken together, these data strongly support the idea that DIRC2 is an electrogenic lysosomal metabolite transporter which is subjected to and presumably modulated by limited proteolytic processing.  相似文献   

13.
A comparative study of membrane carbohydrate characteristics of pathogenic and non-pathogenic trophozoites and cysts of free-living Acanthamoeba castellanii, Naegleria fowleri and A. astronyxis, respectively from sewage sludge in India was carried out by means of fluorescein-conjugated lectin binding using eight lectins. Two lectins, viz. Concanavalin A and Phytohaemagglutinin P, could bind all free-living amoebae at different concentrations. The most notable feature of the study is that peanut agglutinin (PNA) and wheatgerm agglutinin (WGA) can differentiate between the pathogenic A. castellanii and non-pathogenic A. astronyxis strain, respectively. However, Ulex agglutinin I (UEA I) was the only lectin positive to both pathogenic A. castellanii and N. fowleri. During in vitro conversion from trophozoites to cysts, A. castellanii and N. fowleri cysts gained WGA-specific saccharide whereas A. castellanii; A. astronyxis and N. fowleri lost or reduced Dolichos biflorus agglutinin, PNA; WGA and ConA, and UEA I-specific saccharides, respectively. Neuraminidase could not alter the fluorescein-lectin binding to WGA and PNA. These demonstrated that only two lectins can recognize the factors giving Acanthamoeba their pathogenic (PNA-specific) and non-pathogenic (WGA-specific) status. More interestingly, UEA I can only differentiate between pathogenic and non-pathogenic amoebae. It is also suggested that during stage conversion the surface of the organism exhibited replacement of saccharides.  相似文献   

14.
Alzheimer's disease (AD) is caused by the cerebral deposition of beta-amyloid (Abeta), a 38-43-amino acid peptide derived by proteolytic cleavage of the amyloid precursor protein (APP). Initial studies indicated that final cleavage of APP by the gamma-secretase (a complex containing presenilin and nicastrin) to produce Abeta occurred in the endosomal/lysosomal system. However, other studies showing a predominant endoplasmic reticulum localization of the gamma-secretase proteins and a neutral pH optimum of in vitro gamma-secretase assays have challenged this conclusion. We have recently identified nicastrin as a major lysosomal membrane protein. In the present work, we use Western blotting and immunogold electron microscopy to demonstrate that significant amounts of mature nicastrin, presenilin-1, and APP are co-localized with lysosomal associated membrane protein-1 (cAMP-1) in the outer membranes of lysosomes. Furthermore, we demonstrate that these membranes contain an acidic gamma-secretase activity, which is immunoprecipitable with an antibody to nicastrin. These experiments establish APP, nicastrin, and presenilin-1 as resident lysosomal membrane proteins and indicate that gamma-secretase is a lysosomal protease. These data reassert the importance of the lysosomal/endosomal system in the generation of Abeta and suggest a role for lysosomes in the pathophysiology of AD.  相似文献   

15.
Heat shock protein 70 (Hsp70) is an evolutionary highly conserved molecular chaperone. Upon cancer-associated translocation to the lysosomal compartment, it promotes cell survival by inhibiting lysosomal membrane permeabilization, a hallmark of stress-induced death. We have recently shown that Hsp70 stabilizes lysosomes by binding to the endo-lysosomal lipid bis(monoacylglycero)phosphate (BMP), an essential co-factor for lysosomal sphingolipid catabolism. The Hsp70–BMP interaction enhances the activity of acid sphingomyelinase, an important enzyme that hydrolyzes sphingomyelin. Importantly, treatment with recombinant Hsp70 effectively reverts the dramatic increase in lysosomal volume and decrease in lysosomal stability in cells from patients with Niemann-Pick disease, a genetic disorder associated with reduced acid sphingomyelinase activity. These findings give new insight into the mechanisms controlling lysosomal stability and integrity, and open new exciting possibilities for the treatment of cancer as well as Niemann-Pick disease.  相似文献   

16.
This study represents the first example of immunological localization of lysosomal acid phosphatase. The intracellular localization of lysosomal acid phosphatase was investigated with immunocytochemical methods at the light and electron microscopical level in cultured fibroblasts obtained from normal subjects and from a patient with I-cell disease. Double-labeling studies using fluorescence microscopy showed that acid phosphatase is present in the same organelles as other hydrolases. At the electron microscopic level in control fibroblasts acid phosphatase was found in the rough endoplasmic reticulum, lysosomes, at the plasma membrane, in vesicles just below the plasma membrane and in multivesicular bodies. This localization was comparable with that of other lysosomal enzymes tested (acid alpha-glucosidase, N-acetyl-beta-hexosaminidase, beta-galactosidase). Acid phosphatase labeling was mainly found in association with the lysosomal membrane and with membranous material present within the lysosome. In I-cell fibroblasts the label was present in the same subcellular organelles but always associated with membranous structures. We suggest that the association of acid phosphatase with membranes might explain the normal enzyme activity found in I-cell fibroblasts.  相似文献   

17.
Localization of nucleotidases dependent on Ca2+ was investigated cytochemically in axenically cultivated trophozoites of Entamoeba histolytica, strain HM-1:IMSS, with an electron microscope. Ca2+-dependent ATPase (EC 3.6.1.3) activity was found on the plasma membrane and on the inner surface of the limiting membrane of a few cytoplasmic vacuoles. Ca2+-dependent ADPase, Ca2+-dependent thiamine pyrophosphatase, and acid phosphatase (EC 3.1.3.2) activities were detected on the inner surface of the limiting membrane of most of the cytoplasmic vacuoles but not on the plasma membrane. Cytoplasmic vacuoles with these enzymatic activities seemed similar in morphological characteristics. Moreover, the reaction product formed by Ca2+-dependent ADPase, Ca2+-dependent thiamine pyrophosphatase and acid phosphatase was demonstrable on the inner surface of the limiting membrane of vacuoles containing ingested red blood cells. The reaction product formed by these enzymes was also observed on the periphery of ingested red blood cells. The findings suggest that cytoplasmic vacuoles with these enzymatic activities are lysosomal in nature, probably phagolysosomes; therefore, the enzymes appear to be at least partially associated with primary lysosomes of E. histolytica.  相似文献   

18.
Although the subcellular distribution profile of acid phosphatase in HeLa cells is typical of a lysosomal enzyme, different lysosomal (70–80%) and supernatant forms (20–30%) have been demonstrated by their differences in pH activity curves, substrate specificities, thermal stability, sensitivity to inhibitors, and kinetics. Enzymes of the lysosomal fraction displayed anomalous kinetics in the hydrolysis of p-nitrophenyl phosphate. The major lysosomal acid phosphatase activity appears to be associated with the membrane.The total acid phosphatase activity in the cell is controlled by the concentration of serum in the medium. The specific activity in the homogenates of cells grown in high serum concentration (30%) is about twice that of cells grown in low serum concentration (1%). This doubling of specific activity holds for the lysosomal enzyme (or enzymes), but little change occurs in the supernatant form (or forms). Two other lysosomal enzymes, β-glucuronidase and N-acetyl-β-d-hexosaminidase, do not increase in specific activity. The serum-dependent formation of acid phosphatase is sensitive to cycloheximide, actinomycin D, and cordycepin. Cycloheximide blocks the increase in enzymatic activity immediately, whereas cordycepin and actinomycin D have no effect for at least 8 h. These findings suggest that de novo protein synthesis is involved in the induction of lysosomal acid phosphatase by serum and that the mRNA for this enzyme is relatively stable.  相似文献   

19.
Lysosomes prepared from the livers of untreated rats and from the livers of rats injected with either Triton WR-1339 or dextran yielded membranes that were similar in both polypeptide composition and activities of ATPase and acid 5'-nucleotidase. The administration of Triton WR-1339 (and dextran) resulted in an increase in ATPase activity of liver homogenates that was associated with a parallel increase in the ATPase activity of the lysosomal membrane. On the other hand, plasma membranes appear to be different from lysosomal membranes with respect to polypeptide composition and enzyme activities. The ATPase activity of lysosomal membranes is not affected by ouabain and suramin, inhibitors of the plasma-membrane ATPase. The plasma-membrane alkaline 5'-nucleotidase has little activity at acid pH. Pulse-labelling of lysosomal membranes with [3H]fucose and with [3H]- and [14C]-leucine occurred rapidly, faster than labelling of plasma membranes. The labelling kinetics indicate that lysosomal membranes may be assembled independently of plasma membranes. These data suggest that, in liver, little bulk transport of plasma membrane to lysosomes takes place, and lysosomal-membrane proteins may not be derived from those of plasma membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号