首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissociation and oxygen equilibrium properties of whole blood and the purified hemoglobin from Eisenia foetida were compared. Oxygen affinities agreed approximately with each other in the range of pH 6.0 to 9.5. The values of n1/2 were higher in whole blood than in the purified hemoglobin between pH 7.0 and 9.5. The maximum values, obtained near pH 8, were about 6 in whole blood and 3.5 in the purified hemoglobin. In the purified hemoglobin, alkaline dissociation started at pH 7.8, and the approximately 60 S whole molecule dissociated completely into approximately 10 S and 5-6 S components at pH 9.1. In whole blood, however, the dissociation started at pH 8.2 and the complete disappearance of the approximately 60 S molecule occurred at pH 9.6. The values of n1/2 for the dissociation products were lower than those of the purified hemoglobin between pH 7.0 and 9.0. The value of n1/2 decreased with increasing dissociation of the approximately 60 S whole molecule with a pH rise in both whole blood and the purified hemoglobin. Addition of CaCl2 or MgCl2 up to 10 mM to the purified hemoglobin at pH 8.0-8.1 induced increases in oxygen affinity and cooperativity and in the stability of the approximately 60 S whole molecule. The effect on the oxygenation properties was greater with CaCl2 than MgCl2 at the same molar concentration. The stabilizing effect on the approximately 60 S molecule was almost the same with both CaCl2 and MgCl2. These results suggest that the dissociation of property of the hemoglobin in whole blood is controlled by both Ca2+ and Mg2+, and that its oxygenation property is controlled by Ca2+.  相似文献   

2.
Oxygen transport properties of blood in two different bovine breeds   总被引:1,自引:0,他引:1  
1. The whole oxygen dissociation curve of oxyhemoglobin has been determined in double-muscled cattle of the Belgian White Blue breed and in Friesian cattle of different body weight. 2. In calves, P50 values are low and DPG level is high (4-20 mumol/g Hb). 3. P50 values of 25 +/- 1.4 mm Hg (mean +/- SD) and a level of DPG less than 1.5 mumol/g Hb have been found in animals weighing more than 80 kg. 4. Effects of temperature and pH on the oxygen dissociation curve have been measured at all levels of saturation. The temperature coefficient (dlog P50/dT) and the Bohr effect expressed as dlog P50/dpH were 0.017 and -0.40, respectively. 5. Hematocrit, hemoglobin concentrations and oxygen capacity of hemoglobin have been measured. 6. No difference between both breeds has been observed. 7. These data can be used to correct measured values of oxygen tension for temperature and pH and to measure oxygen content of blood in cattle.  相似文献   

3.
Bovine hemoglobin was cross-linked with glutaraldehyde, resulting in high oxygen affinity polymeric hemoglobin dispersions of varying molecular weight distributions. High oxygen affinity acellular oxygen carriers were designed in order to exhibit oxygen release profiles closer to that of human red blood cells (RBCs), without exhibiting the inherent increased vasoactivity that occurs with low oxygen affinity acellular oxygen carriers (1, 2). Oxygen dissociation curves were measured for polymerized hemoglobin dispersions at various pH values (7.0, 7.4, and 8.0) and chloride ion concentrations. Unmodified hemoglobin showed an increase in oxygen affinity with increased chloride ion concentration and a decrease in oxygen affinity with increased pH, as was previously demonstrated in the literature (3). For glutaraldehyde-polymerized hemoglobin dispersions, the ability of the oxygen affinity to respond to changes in Bohr H+ and Cl- concentration was weakened. However, at acidic physiological pH (pH = 7), the Bohr effect was still present at high Cl- concentrations. Thus, the Bohr effect maintained some dependency on the Cl- concentration.  相似文献   

4.
Hemoglobins (Hb) Yakima and Kempsey were purified from patients' blood with diethylaminoethyl cellulose column chromatography. The oxygen equilibrium curves of the two hemoglobins and the effects of organic phosphates on the function were investigated. In 0.1 M phosphate buffer, Hill's constants n for Hb Yakima and Hb Kempsey were 1.0 to 1.1 at the pH range for 6.5 to 8.0 and the oxygen affinities of both the mutant hemoglobins were about 15 to 20 times that of Hb A at pH 7.0. The Bohr effect was normal in Hb Yakima and one-fourth normal in Hb Kempsey. In the presence of inositol hexaphosphate, the oxygen affinities to Hb Yakima and Hb Kempsey were greatly decreased, and an interesting result revealed that these hemoglobins showed clear cooperativity in oxygen binding. Hill's constant n in the presence of inositol hexaphosphate was 1.9 for Hb Kempsey and 2.3 for Hb Yakima at pH 7.0. The cooperativities of these mutant hemoglobins were pH-dependent, and Hb Kempsey showed high cooperativity at low pH (n equal 2.1 at pH 6.6) and low cooperativity at high pH (n equal 1.0 at pH 8.0). Hb Yakima showed similar pH dependence in cooperativity. In the presence of inositol hexaphosphate, Hb A showed a pH-dependent cooperativity different from those of Hb Yakima and Hb Kempsey, namely, Hill's n was the highest in alkaline pH (n equal 3.0 at pH 8.0) and decreased at lower pH (n equal 1.5 at pH 6.5). 2,3Diphosphoglycerate bound with the deoxygenated Hb Yakima and Hb Kempsey, however, had no effect on the oxygen binding of these abnormal hemoglobin. The pH-dependent cooperativity of alpha1beta2 contact anomalous hemoglobin and normal hemoglobin was explained by the shifts in the equilibrium between the high and low ligand affinity forms.  相似文献   

5.
The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 × 106 Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (Dh) of 27 ± 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller Dh of 10 ± 1 nm. The decrease in Dh suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DLS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25°C and 38°C. At 25°C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38°C is faster than that at 25°C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25°C. Autoxidation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.  相似文献   

6.
The steady-state fluorescence properties of the multisubunit hemoglobin isolated from the earthworm, Lumbricus terrestris, were studied by front-face fluorometry. Acid and alkaline dissociation of this high-molecular-weight hemoglobin were examined over the pH range 3.7-12.5 using different liganded states (oxy, CO, met). The relative intensity of the emission maximum at 320 nm (exc. 280 nm) is ligand-dependent increasing as follows: oxy less than deoxy less than CO less than met at pH 7.0. The intensity of the emission maximum of oxyhemoglobin at the alkaline acid end point, pH 10.5 (333 nm), is significantly greater than that observed at the acid end point, pH 4.18 (320 nm), suggesting different subunit dissociation. The spectra of oxyhemoglobin at pH 4.18 and the spectrum of carbonmonoxy hemoglobin at pH 7.0 in the presence of 1 M magnesium chloride were almost identical, indicating similar subunit dissociation. Difference spectrum (pH 9.0-7.2) of fluorescence emission (exc. 305) resulted in a maximum at 341 nm, indicative of tyrosinate formation. This suggests that tyrosine(s) may also be located at the subunit interface(s) of this hemoglobin. These studies indicate that several aromatic amino acid residues are associated with the critical sites of subunit interactions within this molecule. Analysis of the fluorescence spectra also suggests that the formation of different subunit species resulting from acid and alkaline dissociation cannot be ruled out.  相似文献   

7.
Oxygen transport characteristics and phosphate compounds were measured in the blood of reedfish, Erpetoichthys calabaricus, a bimodal breather. Blood from reedfish possessed the following values (mean +/- SD): hematocrit (21.7 +/- 0.4%), hemoglobin concentration (7.53 +/- 1.75 g%), red blood cell count (0.45 +/- 0.10 X 10(6)/mm3) and oxygen capacity (10.1 +/- 2.3 vol%). Although hematocrit, hemoglobin concentration, red blood cell count and oxygen capacity were all highly intercorrelated (P less than 0.01 in all cases), none of these parameters were significantly correlated with sex, weight or length in our sixteen fish sample. Erythrocyte volumes equalled 480 micrometers3, showed less variation (CV = 10.4%) and did not correlate with any other measured variable. Blood oxygen dissociation curves were sigmoidal and the P50's equalled 17.34 +/- 3.04 at 1% CO2 and 25 degrees C. Mean Bohr shift (delta log P50/delta pH) was -0.274 +/- 0.087. Temperature strongly influenced blood oxygen affinity. At 1% CO2, delta log P50/delta T equalled 0.026 +/- 0.006 (mean +/- SD). These hematological properties indicate that the blood of reedfish is similar to those of other tropical air-breathering species. Concentrations of total phosphate in the erythrocytes and percentage of total phosphate bound as nucleotide triphosphates were high. Surprisingly, 2,3diphosphoglycerate was found which has been reported in the erythrocytes of only two other fish species. Blood characteristics of reedfish exposed to air for 4 hr with one exception (Hill numbers) were not significantly different from water exposed controls. This suggests that the reedfish does not possess blood respiratory mechanisms to facilitate respiration solely by air-breathing.  相似文献   

8.
Oxygen affinity and other hematological parameters in strictly subterranean mole-rats, Cryptomys hottentotus (subspecies pretoriae) were measured immediately upon capture and after 14-21 days in captivity. The pH, hematocrit, hemoglobin (Hb) concentration, blood oxygen content, 2,3 bisphosphoglycerate (2,3 BPG) concentration and oxygen dissociation curves (ODC), as well as tonometric measurements, were determined using whole blood. Additionally ODCs were also determined for stripped hemolysates of individual animals. Compared to other mammals, blood of freshly caught animals had low pH (7.32+/-0.22), elevated hematocrits (48.4+/-3.8 %) and significantly lower P50 values for whole blood (21.1+/-1.6 mm Hg at pH 7.4) than those reported for other similar-sized fossorial and terrestrial mammals. Blood carbon dioxide content (22.4+/-3.9 mMol L(-1)), hemoglobin concentration (1.9+/-0.15 mMol L(-1)), oxygen content (164.8+/-26 mL L(-1)), bicarbonate concentrations (22.5+/-3.5 mMol L(-1)) were within the range of values reported for similar-sized mammals. We conclude that high blood-oxygen affinity, low body temperature and possibly also high hematocrit enable C. h. pretoriae to maintain an adequate oxygen supply to the tissues in a potentially hypoxic burrow atmospheres, but that the blood of this species shows no exceptional CO2 sensitivity or buffering capacity.  相似文献   

9.
Precise oxygen equilibrium curves have been obtained for cobalt hemoglobin at pH values from 5.5 to 8.2. The Hill plots are symmetric having asymptotes with slopes of unity. At pH 7.0, cobalt hemoglobin has p0.5 = 116 toor (15.45 kPa), pm = 117 torr (15.58 kPa) and a Hill coefficient of n = 1.72. The values of n decrease slightly with either decrease or increase of pH; the protein is almost non-cooperative at pH greater than 8.2. The Adair constants have been calculated with a non-linear least-squares program. From deltalnpm/deltapH a maximum of 2.5 Bohr protons was calculated at physiological pH values. The majority of alkaline Bohr protons are released after binding of the first and the third oxygen with maxima at pH 7.6 and 7.3, respectively. The acid Bohr effect was also observed with the majority of the protons taken up following the first and third oxygen bound. Smaller alkaline Bohr effects were obtained by differential titration and at higher pH than that calculated from oxygen equilibria. The discrepancy can be largely attributed to the binding of salt components to cobalt hemoglobin.  相似文献   

10.
1. A detailed account is given of an electrolytic method for determining the oxygen dissociation curve of fish blood using a single sample of 50-100 mul for the whole curve. The accuracy and some of the problems arising from its uses are discussed. 2. Oxygen dissociation curves have been determined for trout blood and human blood at temperatures of 15 and 37 degrees C. The relationship between P50 and temperature is similar to that obtained using other methods. Absolute values of P50 are generally lower than those obtained by other methods, especially in the case of fish blood. 3. The effect of PCO2 and pH on the oxygen dissociation curve of trout blood is tested and it is shown that PCO2 has a more marked effect than pH when the other factor is maintained at a constant level. The Bohr factor (delta log P50/delta pH) appears to be approximately the same and independent of the PCO2. 4.The P50 of ray blood determined from fish during and after an operation showed an increased Bohr factor.  相似文献   

11.
The dissociation of the extracellular hemoglobin of Tubifex tubifex at alkaline and acid pH, and its reassociation upon return to neutral pH, was investigated using gel filtration, ultracentrifugation, and polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE). Tubifex hemoglobin dissociated at pH above 8 and below 6; both dissociations appeared to be equilibrium processes. The extent of dissociation increased as the pH moved away from neutrality; although dissociation was virtually complete at pH 11, its extent at acid pH did not exceed 50–60% at pH 4. Ca(II), Mg(II), and Sr(II) cations over the range 1–100 mm decreased the extent of the dissociation only at alkaline pH. The visible absorption spectrum of the oxyhemoglobin remained unaltered in the pH range 4–9. At more extreme pH, it changed with time, altering irreversibly to that of the aquo ferri form. Gel filtration of the hemoglobin at both extremes of pH showed that it dissociated into two heme-containing fragments; one consisting of subunit 1 (Mr ~ 17,000) and the other containing subunits 2, 3, and 4 of the hemoglobin (Mr ~ 60,000). Upon return to neutral pH, the dissociated fragment reassociated to the extent of 50 to 80% to whole hemoglobin molecules. The reassociation decreased with increase in alkaline pH, and with decrease in acid pH to which the hemoglobin had been exposed; it increased in the presence of Ca(II), Sr(II), and Mg(II) only subsequent to dissociation at alkaline pH. The SDS-PAGE patterns, gel-filtration elution volumes, and α-helical contents, determined from circular dichroism at 222 nm, of the reassociated whole molecules were identical to those of the native hemoglobin.  相似文献   

12.
1. An electrolytic method was used to plot the oxygen dissociation curves of whole blood from both the larva and adult of the lamprey Lampetra fluviatilis at a temperature of 10 degrees C and over a pH range of 6-5-8-1. 2. Larval blood has a far higher affinity for oxygen than that of adults, the respective calculated P50's at a pH of 7-75 being 1-9 and 10-7 mmHg. 3. The high affinity of larval blood is of use to a relatively sedentary animal living in burrows, and the increased oxygen delivery pressure brought about by the shift of the curve to the right in the adult is of advantage to an animal exhibiting greater activity. 4. The n value obtained from the Hill plots increased with increasing saturation and were lower in larvae than adults at the same level of blood saturation. 5. The Bohr effect in larvae at 10 degrees C over the pH range 6-5-8-1 was --0-25, a value which did not differ significantly from the -0-22 found in adults.  相似文献   

13.
A new hemoglobin variant has been found in a Dutch Caucasian girl and detected also in members of three generations of her family. This variant is characterized by the substitution of an aspartic acid at position 73 (E 17) of the beta-chain with a glycine residue. Hemoglobin Tilburg makes up to 42% of the total hemoglobin in the blood of the proposita, it is stable at the isopropanol test, and not associated with significant hematological abnormalities in heterozygous carriers. The oxygen dissociation curve of the purified variant, carried out at different pH values, shows a definite reduction of the affinity for oxygen and a normal alkaline Bohr effect. Three more hemoglobins with a single amino acid substitution at the same site have been previously described: Hb Korle-Bu (Asp----Asn), Hb Mobile (Asp----Val) and Hb Vancouver (Asp----Tyr). In all these proteins the affinity for oxygen is lowered to an extent which is variable and characteristic of each mutant. In this paper we discuss the possible mechanism responsible for the abnormal behaviour of hemoglobins substituted at beta 73.  相似文献   

14.
D B?ning  G Enciso 《Blut》1987,54(6):361-368
In blood of 21 anemic patients and 8 normal subjects (N) three oxygen dissociation curves each were measured at different pH values to calculate Bohr coefficients after acidification with CO2 (BCCO2) or fixed acid (BCFA), and other important parameters of oxygen affinity. The patients had either low hemoglobin or red cell production (L: n = 11, 7.3 g/dl Hb) or high erythrocyte production combined with high loss (H: n = 10, 7.8 g/dl Hb). The standard half saturation pressure P50 (pH 7.4, 37 degrees C) was equally elevated in both anemic groups (L: 30.5, H: 30.8, N: 26.7 mmHg), as well as the diphosphoglycerate concentration (DPG) (L: 18.7, H: 18.6, N: 12.7 mumol/g Hb). The red cell pH of the anemics was lower than for the N (approximately 0.045 units) causing part of the difference in P50. Hill's "n" tended to high values in the anemics except at low O2-saturation in the H. For BCCO2 no significant difference among the groups was observed. BCFA, however, increased in the H at low SO2 compared to the N and L. The cause for most of the changes in hemoglobin oxygen affinity in anemics was the high [DPG]. The combination of high P50 and high "n" value as in the L seems to be most advantageous for tissue oxygenation.  相似文献   

15.
Hemoglobin Alberta has an amino acid substitution at position 101 (Glu----Gly), a residue involved in the alpha 1 beta 2 contact region of both the deoxy and oxy conformers of normal adult hemoglobin. Oxygen equilibrium measurements of stripped hemoglobin Alberta at 20 degrees C in the absence of phosphate revealed a high affinity (P50 = 0.75 mm Hg at pH 7), co-operative hemoglobin variant (n = 2.3 at pH 7) with a normal Bohr effect (- delta log P50/delta pH(7-8) = 0.65). The addition of inositol hexaphosphate resulted in a decrease in oxygen affinity (P50 = 8.2 mm Hg at pH 7), a slight increase in the value of n and an enhanced Bohr effect. Rapid mixing experiments reflected the equilibrium results. A rapid rate of carbon monoxide binding (l' = 7.0 X 10(5) M-1 S-1) and a slow rate of overall oxygen dissociation (k = 15 s-1) was seen at pH7 and 20 degrees C in the absence of phosphate. Under these experimental conditions the tetramer stability of liganded and unliganded hemoglobin Alberta was investigated by spectrophotometric kinetic techniques. The 4K4 value (the liganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta was found to be 0.83 X 10(-6) M compared to a 4K4 value for hemoglobin A of 2.3 X 10(-6) M, indicating that the Alberta tetramer was less dissociated into dimers than the tetramer of hemoglobin A. The values of 0K4 (the unliganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta and hemoglobin A were also measured and found to be 2.5 X 10(-8) M and 1.5 X 10(-10) M, respectively, demonstrating a greatly destabilized deoxyhemoglobin tetramer for hemoglobin Alberta compared to deoxyhemoglobin A. The functional and subunit dissociation properties of hemoglobin Alberta appear to be directly related to the dual role of the beta 101 residue in stabilizing the tetrameric form of the liganded structure, while concurrently destabilizing the unliganded tetramer molecule.  相似文献   

16.
A new hemoglobin variant has been found in a Dutch Caucasian girl and detected also in members of three generations of her family. This variant is characterized by the substitution of an aspartic acid at position 73 (E 17) of the ß-chain with a glycine residue. Hemoglobin Tilburg makes up to 42% of the total hemoglobin in the blood of the proposita, it is stable at the isopropanol test, and not associated with significant hematological abnormalities in heterozygous carriers. The oxygen dissociation curve of the purified variant, carried out at different pH values, shows a definite reduction of the affinity for oxygen and a normal alkaline Bohr effect. Three more hemoglobins with a single amino acid substitution at the same site have been previously described: Hb Korle-Bu (Asp→Asn), Hb Mobile (Asp→Val) and Hb Vancouver (Asp→Tyr). In all these proteins the affinity for oxygen is lowered to an extent which is variable and characteristic of each mutant. In this paper we discuss the possible mechanism responsible for the abnormal behaviour of hemoglobins substituted at ß 73.  相似文献   

17.
Hemoglobin I was isolated from nodules formed on the roots of Parasponia andersonii inoculated with Rhizobium strain CP 283. The rate of oxygen dissociation from Parasponia hemoglobin increases about 12-fold between pH 4 and 7, with apparent pK 6.4, to reach a limiting value of 14.8s-1. The optical spectrum of oxyhemoglobin in the visible region is also dependent on pH with pK near 6.4. The rate constant for oxygen combination with Parasponia hemoglobin increases about 7-8-fold between pH 4 and 7, with apparent pK 5.37, to reach a value of 1.67 X 10(8) M-1 s-1 at pH 7. The optical spectrum of deoxyhemoglobin in the visible region and the rate constant for carbon monoxide combination are also dependent on pH with apparent pK 5.65 and 5.75, respectively. The rate constant for carbon monoxide dissociation is independent of pH. The oxygen affinity of Parasponia hemoglobin, P50 = 0.049 torr at 20 degrees C, calculated from the kinetic constants at pH 7, is very great. At alkaline pH there is a prominent geminate reaction with oxygen and nitric oxide, with both subnanosecond and tens of nanosecond components. These reactions disappear at acid pH, with pK 6.4, and the effective quantum yield is reduced. In general, the reactions of Parasponia hemoglobin with oxygen and carbon monoxide resemble those of soybean leghemoglobin. In each, great oxygen affinity is achieved by unusually rapid oxygen combination together with a moderate rate of oxygen dissociation. We suggest that protonation of a heme-linked group with pK near 6.4 controls many properties of Parasponia oxyhemoglobin, and protonation of a group with pK near 5.5 controls many properties of Parasponia deoxyhemoglobin.  相似文献   

18.
Trichomonad total extracts (TTE), or vesicular (P30) and soluble (530) subcellular fractions from 3 pathogenic Trichomonas vaginalis strains (GT-3. GT-13. and GT-15), lysed both human and Sprague-Dawley rat erythrocytes in a time- and dose-dependent manner. The entire hemolytic activity of TTE was located in P30, showing 2 peaks of maximum activity, one at pH 6.0 and another at pH 8.0. in the presence of 1 mM Ca2+. Hemolytic activity on rat erythrocytes was greater at pH 6.0 16.71 +/- 0.33 hemolytic units IHU]/mg/hr to 11.60 +/- 0.24 HU/mg/hr) than at pH 8.0 (3.81 +/- 0.30 HU/mg/hr to 5.75 +/- 0.65 HU/mg/hr). and it was greater than that on human red blood cells at pH 6.0 (2.67 +/- 0.19 HU/mg/hr to 4.08 +/- 0.15 HU/mg/hr) or pH 8.0 (2.24 +/- 0.0 9 HU/mg/hr to 2.81 +/- 0.06 HU/mg/hr). The alkaline and acidic hemolytic activity diminished (60-93% at pH 6.0 and 78-93% at pH 8.0) by the effect of 80 microM Rosenthal's inhibitor, which also inhibited 27-45% and 29-54% trichomonad alkaline and acidic phospholipase A activities, respectively. Vesicles, vacuoles, and hydrogenosomes were rich in P30. Trichomonas vaginalis has a hemolytic PLA, which could be involved in its cytopathogenic mechanism.  相似文献   

19.
Various oxidized mono/di/tri/poly saccharides were studied as potential hemoglobin (Hb) cross-linkers in order to produce oxygen carriers with high oxygen affinities (low P(50)'s) and high molecular weights (therefore lower macromolecular diffusivities compared to tetrameric Hb). Such physical properties were desired to produce polymerized hemoglobins (PolyHbs) with oxygen release profiles similar to that of human blood, as was demonstrated in work by Winslow (1). In this present study, bovine hemoglobin was cross-linked with a variety of oxidized (ring-opened) saccharides, which resulted in cross-linked Hb species ranging in size from 64 to 6400 kDa (depending on the particular oxidized saccharide used in the reaction) and P(50)'s ranging from 6 to 15 mmHg. A parallel synthetic approach was used to synthesize these carbohydrate-hemoglobin conjugates, and asymmetric flow field-flow fractionation (AFFF) coupled with multi-angle static light scattering (MASLS) was used to measure the absolute molecular weight distribution of these PolyHb dispersions. Cross-linking reactions were conducted at two pHs (6 and 8), with larger cross-linked Hb species produced at pH 8 (where hydrolysis was most likely to occur between glycosidic bonds linking adjacent saccharide rings) rather than at pH 6. The largest molecular weight species formed from these reactions consisted of Hb cross-linked with ring-opened lactose, maltose, methylglucopyranoside, sucrose, trehalose, and 15 kDa and 71 kDa dextran at high pH (pH 8). The most promising Hb cross-linker was methylglucopyranoside, which resulted in very large cross-linked Hb species, with low P(50)'s and lower methemoglobin (metHb) levels compared to the other Hb cross-linking reagents.  相似文献   

20.
Kidney alkaline phosphatase is an enzyme which requires two types of metals for maximal activity: zinc, which is essential, and magnesium, which is stimulatory. The main features of the Mg2+ stimulation have been analyzed. The stimulation is pH-dependent and is observed mainly between pH 7.5 and 10.5. Mg2+ binding to native alkaline phosphatase is characterized by a dissociation constant of 50 muM at pH 8.5,25 degrees. Binding of Zn2+ is an athermic process. Both the rate constants of association, ka, and of dissociation, kd, have low values. Typical values are 7 M(-1) at pH 8.0, 25 degrees, for ka and 4.10(-4) S(-1) at pH 8.0, 25 degrees, for kd. The on and off processes have high activation energies of 29 kcal mol (-1). Mg2+ can be replaced at its specific site by Mn2+, Co2+, Ni2+, and Zn2+. Zinc binding to the Mg2+ site inhibits the native alkaline phosphatase. Mn2+, Co2+, and Ni2+ also bind to the Mg2+ site with a stimulatory effect which is nearly identic-al with that of Mg2+, Mn2+ is the stimulatory cation which binds most tightly to the Mg2+ site; the dissociation constant of the Mn2+ kidney phosphatase complex is 2 muM at pH 8.5. The stoichiometry of Mn2+ binding has been found to be 1 eq of Mn2+ per mol of dimeric kidney phosphatase. The native enzyme displays absolute half-site reactivity for Mn2+ binding. Mg2+ binding site and the substrate binding sites are distinct sites. The Mg2+ stimulation corresponds to an allosteric effect. Mg2+ binding to its specific sites does not affect substrate recognition, it selectively affects Vmax values. Quenching of the phosphoenzyme formed under steady state conditions with [32P]AMP as a substrate as well as stopped flow analysis of the catalyzed hydrolysis of 2,4-dinitrophenyl phosphate or p-nitrophenyl phosphate have shown that the two active sites of the native and of the Mg2+-stimulated enzyme are not equivalent. Stopped flow analysis indicated that one of the two active sites was phosphorylated very rapidly whereas the other one was phosphorylated much more slowly at pH 4.2. Half of the sites were shown to be reactive at pH 8.0. Quenching experiments have shown that only one of the two sites is phosphorylated at any instant; this result was confirmed by the stopped flow observation of a burst of only 1 mol of nitrophenol per mol of dimeric phosphatase in the pre-steady state hydrolysis of p-nitrophenyl phosphate. The half-of-the-sites reactivity observed for the native and for the Mg2+-stimulated enzyme indicates that the same type of complex, the monophosphorylated complex, accumulates under steady state conditions with both types of enzymes. Mg2+ binding to the native enzyme at pH 8.0 increases considerably the dephosphorylation rate of this monophosphorylated intermediate. A possible mechanism of Mg2+ stimulation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号