首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of α(1,3)galactosyltransferase (αGT) as a method of inducing hyperacute rejection of tumors has been gaining interest recently. However, the approach is based in part on the sensitivity of each tumor line to the effects of complement lysis. Tumors expressing complement resistance factors such as membrane cofactor (CD46), decay accelerating factor (CD55) and protectin (CD59) have been shown to be more resistant to complement mediated lysis. Anchored to the membrane by a glycosylphosphoinositol moiety (GPI-anchored), CD55 and CD59 can be cleaved by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PIPLC). Complement resistant A549 human lung carcinoma cells were engineered to express both the murine αGT gene and the B. thuringiensis PIPLC gene to alleviate complement resistance and enhance αgal-mediated cancer killing. The PIPLC native signal sequence was replaced with the human epidermal growth factor signal sequence, EGFssPIPLC, to induce secretion from A549. Expression of EGFssPIPLC resulted in complete removal of CD55 and CD59 while sparing the non-GPI-anchored CD46. Results demonstrated that A549 cells transduced with two recombinant retroviral vectors carrying the αGT and EGFssPIPLC genes expressed high levels of αgal epitope and exhibited a 5-fold increase in sensitivity to anti-αgal mediated complement lysis.  相似文献   

2.
α 半乳糖苷酶可以特异地清除半乳糖α 1,3 半乳糖抗原 (Galα1,3Galantigen) ,此抗原是引起异种器官移植超急性排斥反应 (HyperacuteRejection ,HAR)的主要异种抗原 .将构建好的α半乳糖苷酶转基因载体通过显微注射的方式注入小鼠受精卵 ,培育出了转基因小鼠 .结果表明 ,转基因小鼠的心、肝、肾、脾、肺组织中均有人α 半乳糖苷酶基因的表达 ,其表达可以有效减少小鼠器官表面Galα1,3Gal抗原的表达水平 ,可以降低转基因小鼠脾细胞对补体介导的杀伤作用的敏感性 .研究表明人源α半乳糖苷酶基因可用于研制不表达Galα1,3Gal抗原的转基因动物 ,从而可以降低异种器官移植HAR的反应强度 ,提高移植物的存活期  相似文献   

3.
反义RNA对猪α-1,3-半乳糖苷转移酶活性的影响   总被引:1,自引:0,他引:1  
 α 1,3 半乳糖表位是猪 人异种移植超急性排斥反应的主要抗原 ,由α 1,3 半乳糖苷转移酶催化合成 .用RT PCR方法扩增中国实验用小型猪α 1,3 半乳糖苷转移酶cDNA的前 582bp ,测定碱基序列并构建其反义表达载体pLXRN ,将其转染入猪主动脉内皮细胞 .NorthernBlotting表明α 1,3 半乳糖苷转移酶mRNA减少 .检测α 1,3 半乳糖苷转移酶活性表明 ,反义RNA可使其活性下降32 2 % .研究结果表明可能通过反义RNA来抑制猪 人异种移植超急性排斥反应  相似文献   

4.
Complement activation mediated by the major xenogeneic epitope in the pig, galactosyl-alpha(1-3) galactosyl sugar structure (alpha-Gal), and human natural antibodies could cause hyperacute rejection (HAR) in pig-to-human xenotransplantation. The same reaction on viruses bearing alpha-Gal may serve as a barrier to zoonotic infection. Expressing human complement regulatory proteins or knocking out alpha-Gal epitopes in pig in order to overcome HAR may therefore pose an increased risk in xenotransplantation with regard to zoonosis. We investigated whether amphotropic murine leukemia virus, porcine endogenous retrovirus, and vesicular stomatitis virus (VSV) budding from primary transgenic pig aortic endothelial (TgPAE) cells expressing human CD55 (hCD55 or hDAF) was protected from human-complement-mediated inactivation. VSV propagated through the ST-IOWA pig cell line, in which alpha-galactosyl-transferase genes were disrupted (Gal null), was also tested for sensitivity to human complement. The TgPAE cells were positive for hCD55, and all pig cells except the Gal-null ST-IOWA expressed alpha-Gal epitopes. Through antibody binding, we were able to demonstrate the incorporation of hCD55 onto VSV particles. Viruses harvested from TgPAE cells were relatively resistant to complement-mediated inactivation by the three sources of human sera tested. Additionally, VSV from Gal-null pig cells was resistant to human complement inactivation. Such protection of enveloped viruses may increase the risk of zoonosis from pigs genetically modified for pig-to-human xenotransplantation.  相似文献   

5.
We have previously reported that anti-Gal-alpha1,3Gal (Gal) IgG3 mAbs mediate a classical complement-dependent hyperacute rejection (HAR), while anti-Gal IgG1 mAbs mediate HAR that is dependent on complement, the Fc-gamma receptors FcgammaRII/III (CD32/CD16), and NK cells. IgG2a and IgG2b subclasses can activate complement and have FcgammaR binding properties in vitro. Whether these IgG subclasses can mediate HAR in vivo and the mechanisms by which they would do so are not known. In this study, we isolated spontaneous IgG switch mutants from an anti-Gal IgG1 hybridoma. In vitro complement-mediated hemolytic assays with mouse complement indicate that both anti-Gal IgG2a and IgG2b mAbs were more potent compared with the parent anti-Gal IgG1. In vivo administration of anti-Gal IgG2a and IgG2b mAbs into Gal-/- mice induced HAR of rat cardiac xenografts. HAR induced by anti-Gal IgG2a and IgG2b was dependent on complement activation and the presence of NK cells. Using FcgammaRIII-deficient (Gal-/-CD16-/-) recipients, we observed that HAR mediated by different anti-Gal IgG subclasses was variably dependent on FcgammaRIII, with IgG1>IgG2b>IgG2a=IgG3. Using FcgammaRI-deficient (Gal-/-CD64-/-) recipients, we observed that HAR mediated by anti-Gal IgG1, IgG2a, and IgG2b, but not by anti-Gal IgG3, was dependent on FcgammaRI. Collectively, these studies demonstrate the necessity and sufficiency of complement in IgG3-mediated HAR and the necessity of both complement and FcgammaR, especially FcgammaRI, in IgG1-, IgG2a-, and IgG2b-mediated HAR.  相似文献   

6.
Sertoli cells protect cotransplanted cells from allogeneic and xenogeneic rejection. Additionally, neonatal porcine Sertoli cells (NPSCs) survive long-term as xenografts in nonimmunosuppressed rodents. This has led to the hypothesis that NPSCs could be used to prevent cellular rejection in clinical transplantation, thereby eliminating the need for chronic immunosuppression. Prior to transplantation of NPSCs in humans it is necessary to determine whether they are also protected from humoral-mediated xenograft rejection. The presence of Gal alpha(1,3)Gal beta(1,4)GlcNAc-R (alphaGal epitope) as well as binding of human immunoglobulin G (IgG) and IgM to NPSCs was examined by immunocytochemical and fluorescence-activated cell sorter analysis. alphaGal was detected on 88.5% +/- 3.0% of NPSCs. Consistent with this, 71.7% +/- 1.0% and 65.4% +/- 5.2% of NPSCs were bound by IgG and IgM, respectively. When cultured NPSCs underwent an in vitro cytotoxicity assay by incubation with human AB serum plus complement, no increase in cellular lysis was observed, while controls--porcine aorta endothelial cells--were shown to contain > 60% dead cells. Finally, activation of the complement cascade was examined by immunohistochemistry. C3 and C4 were deposited on the surface of the NPSC membrane, indicating activation of complement. Although the complement cascade was activated, the membrane attack complex (MAC) was not formed. These data demonstrate that despite expression of alphaGal, binding of xenoreactive antibodies, and the activation of complement, NPSCs survive human antibody and complement-mediated lysis by preventing MAC formation. This suggests that NPSCs may be able to survive humoral-mediated rejection in a clinical situation.  相似文献   

7.
Galactose alpha1-3 galactose (Gal) trisaccharides are present on the surface of wild-type pig cells, as well as on viruses particles produced from such cells. The recognition of Gal sugars by natural anti-Gal antibodies (NAb) in human and Old World primate serum can cause the lysis of the particles via complement-dependent mechanisms and has therefore been proposed as an important antiviral mechanism. Recently, pigs have been generated that possess disrupted galactosyl-transferase (GGTA1) genes. The cells of these pigs do not express Gal sugars on their surface, i.e., are Gal null. Concerns have been raised that the risk of virus transmission from such pigs may be increased due to the absence of the Gal sugars. We investigated the sensitivity of porcine endogenous retrovirus (PERV) produced from Gal-null and Gal-positive pig cells to inactivation by purified NAb and human serum. PERV produced in Gal-null pig cells was resistant to inactivation by either NAb or human serum. In contrast, although Gal-positive PERV particles were sensitive to inactivation by NAb and human serum, they required markedly higher concentrations of NAb for inactivation compared to the Gal-positive cells from which they were produced. Complete inactivation of Gal-positive PERV particles was not achievable despite the use of high levels of NAb, indicating that NAb-mediated inactivation of cell-free PERV particles is an inefficient process.  相似文献   

8.
Alpha(1,3)Galactosyltransferase (GT) is a Golgi-localized enzyme that catalyzes the transfer of a terminal galactose to N-acetyllactosamine to create Galalpha(1,3)Gal. This glycosyltransferase has been studied extensively because the Galalpha(1,3)Gal epitope is involved in hyperacute rejection of pig-to-human xenotransplants. The original crystal structure of bovine GT defines the amino acids forming the catalytic pocket; however, those directly involved in the interaction with the donor nucleotide sugars were not characterized. Comparison of amino acid sequences of GT from several species with the human A and B transferases suggest that His271 of pig GT may be critical for recognition of the donor substrate, UDP-Gal. Using pig GT as the representative member of the GT family, we show that replacement of His271 with Ala, Leu, or Gly caused complete loss of function, in contrast to replacement with Arg, another basic charged residue, which did not alter the ability of GT to produce Galalpha(1,3)Gal. Molecular modeling showed that His271 may interact directly with the Gal moiety of UDP-Gal, an interaction possibly retained by replacing His with Arg. However, replacing His271 with amino acids found in alpha(1,3)GalNAc transferases did not change the donor nucleotide specificity. Thus His271 is critical for enzymatic function of pig GT.  相似文献   

9.
Galactose oxidase (EC 1.1.3.9, GAO) was used to convert the C-6′ OH of Galβ(1 → 4)Glcβ–OBn (5) to the corresponding hydrated aldehyde (7). Chemical modification, through dehydratative coupling and reductive amination, gave rise to a small library of Galβ(1 → 4)Glcβ–OBn analogues (9a–f, 10, 11). UDP-[6-3H]Gal studies indicated that α1,3-galactosyltransferase recognized the C-6′ modified Galβ(1 → 4)Glcβ–OBn analogues (9a–f, 10, 11). Preparative scale reactions ensued, utilizing a single enzyme UDP-Gal conversion as well as a dual enzymatic system (GalE and α1,3GalT), taking full advantage of the more economical UDP-Glc, giving rise to compounds 6, 15–22. Galα(1 → 3)Galβ(1 → 4)Glcβ–OBn trisaccharide (6) was produced on a large scale (2 g) and subjected to the same chemoenzymatic modification as stated above to produce C-6″ modified derivatives (23–30). An ELISA bioassay was performed utilizing human anti-αGal antibodies to study the binding affinity of the derivatized epitopes (6, 15–30). Modifications made at the C-6′ position did not alter the IgG antibody's ability to recognize the unnatural epitopes. Modifications made at the C-6″ position resulted in significant or complete abrogation of recognition. The results indicate that the C-6′ OH of the αGal trisaccharide epitope is not mandatory for antibody recognition. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
 To avoid destruction by complement, normal and malignant cells express membrane glycoproteins that restrict complement activity. These include decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and protectin (CD59), which are all expressed on colonic adenocarcinoma cells in situ. In this study we have characterised the C3/C5 convertase regulators DAF and MCP on the human colonic adenocarcinoma cell line HT29. DAF was found to be a glycosyl-phosphatidylinositol-anchored 70-kDa glycoprotein. Blocking experiments with F(ab′)2 fragments of the anti-DAF monoclonal antibody BRIC 216 showed that DAF modulates the degree of C3 deposition and mediates resistance to complement-mediated killing of the cells. The expression and function of DAF were enhanced by tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β). Cells incubated with interferon γ (IFNγ) did not alter their DAF expression. Two MCP forms were expressed, with molecular masses of approximately 58 kDa and 68 kDa, the lower form predominating. MCP expression was up-regulated by IL-1β, but not by TNFα or IFNγ. Expression of DAF and MCP promotes resistance of colonic adenocarcinoma cells to complement-mediated damage, and represents a possible mechanism of tumour escape. Received: 18 July 1995 / Accepted: 4 January 1996  相似文献   

11.
A novel α-Gal resin was chemo-enzymatically synthesized for the efficient adsorption of anti-α-Gal antibodies in human serum for xenotransplantation. To covalently conjugate a hexanoate linker with lactose and N-acetylglucosamine, both acceptor sugars were acetylated and brominated. Then, α-and β-galactoses were sequentially added to the linker-containing saccharides at their non-reducing ends by using recombinant α-(1,3)-and β-(1,4)-galactosyltransferases from E. coli. Finally, the synthesized α-Gal derivatives were immobilized on HiCore, a core-shell type resin, that was functionalized with amino groups on the shell region, as a packing material on-column. Using this method we were able to demonstrate that the α-Gal HiCore resin had a reduced level of non-specific protein adsorption compared with the commercially available polystyrene supports, TentaGel, and agarose-based supports, when Lectin BS-I was used as the model binding protein. Furthermore, the α-Gal HiCore resin was more efficient at eliminating anti-α-Gal IgGs from the total human IgGs through immunoadsorption than the other two α-Gal resins, α-Gal TentaGel and α-Gal agarose. The α-Gal HiCore resin developed in this study can be utilized in a wide range of applications including ex vivo immunoadsorption and as a quantitative assay of anti-Gal antibody in human sera.  相似文献   

12.
The transplantation of organs from other species into humans is considered to be a potential solution to the shortage of human donor organs. Organ transplantation from pig to human, however, results in hyperacute rejection, initiated by the binding of human natural antidonor antibody and complement. The major target antigen of this natural antibody is the terminal disaccharide Galalphal,3Gal, which is synthesized by Galbeta1,4GlcNAc alpha1,3-galactosyltransferase. Here we review our current knowledge of this key enzyme. A better understanding of structure, enzyme properties, and expression pattern of alpha1,3-galactosyltransferase has opened up several novel therapeutic approaches to prevent hyperacute vascular rejection. Cloning, and expression in vitro of the corresponding cDNA, has allowed to develop strategies to induce immune tolerance, and deplete or neutralize the natural xenoreactive antibody. Elucidation of the genomic structure has led to the production of transgenic animals that are lacking alpha1,3-galactosyltransferase activity. A detailed knowledge of the enzyme properties has formed the basis of approaches to modify donor organ glycosylation by intracellular competition. Study of the expression pattern of alpha1,3-galactosyltransferase has helped to understand the mechanism of hyperacute rejection in discordant xenotransplantation, and that of complement-mediated, natural immunity against interspecies transmission of retroviruses.  相似文献   

13.
Human sera contain high levels of natural antibody (Ab) to Galα1-3Gal, a terminal glycosidic structure expressed on the surface of cells of mammals other than Old World primates. Incorporation of this determinant onto retroviral membranes by passage of viruses in cells encoding α-1-3-galactosyltransferase (GT) renders retroviruses sensitive to lysis by natural Ab and complement in normal human serum (NHS). Plasma membrane-budding viruses representing four additional virus groups were examined for their sensitivities to serum inactivation after passage through human cell lines that lack a functional GT or human cells expressing recombinant porcine GT. The inactivation of lymphocytic choriomeningitis virus (LCMV) by NHS directly correlated with host modification of the virus via expression of Galα1-3Gal and was blocked by incorporation of soluble Galα1-3Gal disaccharide into the inactivation assay. GT-deficient mice immunized to make high levels of Ab to Galα1-3Gal (anti-Gal Ab) were tested for resistance to LCMV passaged in GT-expressing cells. Resistance was not observed, but in vitro analyses of the mouse immune sera revealed that the antiviral activity of the sera was insufficient to eliminate LCMV infectivity on its natural targets of infection, macrophages, which express receptors for Ab and complement. Newcastle disease virus and vesicular stomatitis virus (VSV) were inactivated by NHS regardless of cell passage history, whereas Sindbis virus (SV) passaged in human cells resisted inactivation. Both VSV and SV passaged in Galα1-3Gal-expressing human cells incorporated this sugar moiety onto their major envelope glycoproteins. SV passaged in mouse cells expressing Galα1-3Gal was moderately sensitive to inactivation by NHS. These results indicate that enveloped viruses expressing Galα1-3Gal differ in their sensitivities to NHS and that a potent complement source, such as that in NHS, is required for efficient inactivation of sensitive viruses in vitro and in vivo.  相似文献   

14.
Glycosyltransferases are normally synthesized as membrane-anchored proteins. However, we recently found that the murine enzyme UDP-Gal:Galβ1→4GLcNAc (Gal to Gal) a1,3 galactosyltransferase (a1,3GT) is secreted in a soluble form into media by mouse teratocarcinoma F9 cells (Cho SK, Yeh J-C, Cho M, Cummings RD (1996) J Biol Chem 271: 3238-46). To study the biosynthesis of this enzyme and whether secretion of the soluble enzyme is a general phenomenon, a solid-phase assay was developed for the a1,3GT activity. A recombinant and soluble form of the murine a1,3GT was produced in H293 cells (H293-a1,3GT) to aid in optimizing the assay. Desialylated orosomucoid was used as an immobilized acceptor in coated microtiter plates. The formation of product was detected by a biotinylated human-derived anti-a-Gal IgG and streptavidin conjugated to either alkaline phosphatase or the recombinant bioluminescent protein aequorin. Enzyme activity was dependent on the concentrations of asialoorosomucoid, UDP-Gal, a1,3GT and the time of incubation. The assay was also useful in monitoring a1,3GT activity during enzyme enrichment procedures. Using this assay, we found that a1,3GT activity was present in both cell extracts and culture media of several mammalian cell lines. Enzyme activity was also present in the sera from several mammals, but activity was absent in the sera from either humans or baboons. Our results demonstrate the development of a novel assay for the a1,3GT and provide evidence that secretion of the enzyme is a common biological phenomenon. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
Rare polyagglutinable NOR erythrocytes contain unusual globoside extention products terminating with a Galα1-4GalNAcβ1-3Gal- unit. This trisaccharide epitope is recognized by recently characterized antibodies naturally occurring in most human sera (Duk et al., Glycobiology, 15, 109, 2005). These antibodies represent two major types of fine specificity. All these antibodies are most strongly inhibited by Galα1-4GalNAcβ1-3Gal (NOR-tri), and weakly by Galα1-4Gal. However, the type 1 antibodies are strongly inhibited by Galα1-4Galβ1-3Gal-R and weakly by Galα1-4GalNAc, while the type 2 antibodies show the opposite reactivities with these two oligosaccharides. Similar antibodies have now been found in horse, rabbit and pig sera. The antibodies were purified from animal sera by affinity chromatography on Galα1-4GalNAcβ1-3Gal-human serum albumin(HSA)-Sepharose 4B conjugate. The specificity of the antibodies was determined by binding to ELISA plates coated with several α-galactosylated oligosaccharide-polyacrylamide (PAA) or -HSA conjugates and by inhibition with synthetic oligosaccharides. The purified antibodies bound specifically to conjugates containing NOR-tri. The inhibition of binding showed that the animal sera also contain two types of anti-NOR antibodies: type 2 was found in the horse serum, and a mixture of both types was present in rabbit and pig serum. These results indicate that anti-NOR, a new and distinct kind of anti-αGal antibody, are present in animal sera and show similar specificties and diversity as their counterparts found in human sera.  相似文献   

16.
Summary In this study, the variety of sugar residues in the gut glycoconjugates of Triturus carnifex (Amphibia, Caudata) are investigated by carbohydrate conventional histochemistry and lectin histochemistry. The oesophageal surface mucous cells contained acidic glycoconjugates, with residues of GalNAc, Gal β1,3 GalNAc and (GlcNAc β1,4) n oligomers. The gastric surface cells mainly produced neutral glycoproteins with residues of fucose, Gal β1-3 GalNAc, Gal-αGal, and (GlcNAc β1,4) n oligomers in N- and O-linked glycans, as the glandular mucous neck cells, with residues of mannose/glucose, GalNAc, Gal β1,3 GalNAc, (GlcNAc β1,4) n oligomers and fucose linked α1,6 or terminal α1,3 or α1,4 in O-linked glycans. The oxynticopeptic tubulo-vesicular system contained neutral glycoproteins with N- and O-linked glycans with residues of Gal-αGal, Gal β1-3 GalNAc and (GlcNAc β1,4) n oligomers; Fuc linked α1,2 to Gal, α1,3 to GlcNAc in (poly)lactosamine chains and α1,6 to GlcNAc in N-linked glycans. Most of these glycoproteins probably corresponds to the H+K+-ATPase β-subunit. The intestinal goblet cells contained acidic glycoconjugates, with residues of GalNAc, mannose/ glucose, (GlcNAc β1,4) n oligomers and fucose linked α1,2 to Gal in O-linked oligosaccharides. The different composition of the mucus in the digestive tracts may be correlated with its different functions. In fact the presence of abundant sulphation of glycoconjugates, mainly in the oesophagus and intestine, probably confers resistance to bacterial enzymatic degradation of the mucus barrier.  相似文献   

17.
The alpha-gal epitope (Galalpha1-3Galbeta1-(3)4GlcNAc-R) is abundantly synthesized on glycolipids and glycoproteins of non-primate mammals and New World monkeys by the glycosylation enzyme alpha1,3galactosyltransferase (alpha1,3GT). In humans, apes and Old World monkeys, this epitope is absent because the alpha1,3GT gene was inactivated in ancestral Old World primates. Instead, humans, apes and Old World monkeys produce the anti-Gal antibody, which specifically interacts with alpha-gal epitopes and which constitutes approximately 1% of circulating immunoglobulins. Anti-Gal has functioned as an immunological barrier, preventing the transplantation of pig organs into humans, because anti-Gal binds to the alpha-gal epitopes expressed on pig cells. The recent generation of alpha1,3GT knockout pigs that lack alpha-gal epitopes has resulted in the elimination of this immunological barrier. Anti-Gal can be exploited for clinical use in cancer immunotherapy by targeting autologous tumour vaccines to APC, thereby increasing their immunogenicity. Autologous intact tumour cells from haematological malignancies, or autologous tumour cell membranes from solid tumours are processed to express alpha-gal epitopes by incubation with neuraminidase, recombinant alpha1,3GT and with uridine diphosphate galactose. Subsequent immunization with such autologous tumour vaccines results in in vivo opsonization by anti-Gal IgG binding to these alpha-gal epitopes. The interaction of the Fc portion of the vaccine-bound anti-Gal with Fcgamma receptors of APC induces effective uptake of the vaccinating tumour cell membranes by the APC, followed by effective transport of the vaccinating tumour membranes to the regional lymph nodes, and processing and presentation of the tumour-associated antigen (TAA) peptides. Activation of tumour-specific T cells within the lymph nodes by autologous TAA peptides may elicit an immune response that in some patients will be potent enough to eradicate the residual tumour cells that remain after completion of standard therapy. A similar expression of alpha-gal epitopes can be achieved by transduction of tumour cells with an adenovirus vector (or other vectors) containing the alpha1,3GT gene, thus enabling anti-Gal-mediated targeting of the vaccinating transduced cells to APC. Intratumoral delivery of the alpha1,3GT gene by various vectors results in the expression of alpha-gal epitopes. Such expression of the xenograft carbohydrate phenotype is likely to induce anti-Gal-mediated destruction of the tumour lesion, similar to rejection of xenografts by this antibody. Opsonization of the destroyed tumour cell membranes by anti-Gal IgG further targets them to APC, thus converting the tumour lesion, treated by the alpha1,3GT gene, into an in situ autologous tumour vaccine.  相似文献   

18.
The expression of human α-1,2-fucosyltransferase (HT) or complement regulatory proteins has been proved as an strategy to overcome hypercute rejection in discordant xenogeneic organ transplantation. In this study, we examined whether peripheral blood mononuclear cells (PBMCs) from polytransgenic mice expressing the human HT, and complement regulatory proteins (DAF and CD59), can provide more effective protection against xenograft rejection. Transgenic mice were produced by co-injection of gene constructs for human HT, DAF and/or CD59. Flow Cytometry (FCM) was used to screen the positive transgenic mice. PBMCs from transgenic mice were incubated with 15% human serum to evaluate natural antibody binding, complement activation and expression of adhesion molecules. Three transgenes were strongly expressed in PBMCs of transgenic mice, and HT expression significantly reduced expression of the major xenoepitope galactose-α-1,3-galactose (α-Gal). Functional studies with PBMCs showed that co-expression of HT and DAF or CD59 markedly increased their resistance to human serum-mediated cytolysis when compared with single transgenic PBMCs. Moreover, the combined expression of triple transgenes in PBMCs led to the greatest protection against human serum-mediated cytolysis, avoided hyperacute rejection and reduced expression of adhesion molecules. Strong co-expression of triple transgenes was completely protected from xenograft hyperacute rejection and partially inhibited acute vascular rejection. The studies suggest that engineering mice to express triple molecules represents an critical step toward prolonging xenograft survival and might be more suitable for xenotransplantation.  相似文献   

19.
20.
The expression of human α-1,2-fucosyltransferase (HT) or complement regulatory proteins has been proved as an strategy to overcome hypercute rejection in discordant xenogeneic organ transplantation. In this study, we examined whether peripheral blood mononuclear cells (PBMCs) from polytransgenic mice expressing the human HT, and complement regulatory proteins (DAF and CD59), can provide more effective protection against xenograft rejection. Transgenic mice were produced by co-injection of gene constructs for human HT, DAF and/or CD59. Flow Cytometry (FCM) was used to screen the positive transgenic mice. PBMCs from transgenic mice were incubated with 15% human serum to evaluate natural antibody binding, complement activation and expression of adhesion molecules. Three transgenes were strongly expressed in PBMCs of transgenic mice, and HT expression signifi-cantly reduced expression of the major xenoepitope galactose-α-1,3-galactose (α-Gal). Functional studies with PBMCs showed that co-expression of HT and DAF or CD59 markedly increased their re-sistance to human serum-mediated cytolysis when compared with single transgenic PBMCs. Moreover, the combined expression of triple transgenes in PBMCs led to the greatest protection against human serum-mediated cytolysis, avoided hyperacute rejection and reduced expression of adhesion mole-cules. Strong co-expression of triple transgenes was completely protected from xenograft hyperacute rejection and partially inhibited acute vascular rejection. The studies suggest that engineering mice to express triple molecules represents an critical step toward prolonging xenograft survival and might be more suitable for xenotransplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号