首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study crude laccases from the white‐rot fungi Cerrena unicolor and Trametes hirsuta were tested for their ability to decolorize simulated textile dye baths. The dyes used were Remazol Brilliant Blue R (RBBR) (100 mg/L), Congo Red (12.5 mg/L), Lanaset Grey (75 mg/L) and Poly R‐478 (50 mg/L). The effect of redox mediators on dye decolorization by laccases was also assessed. C. unicolor laccase was able to decolorize all the dyes tested. It was especially effective towards Congo Red and RBBR with 91 and 80% of color removal in 19.5 h despite the fact that simulated textile dye baths were used. Also Poly R‐478 and Lanaset Grey were partially decolorized (69 and 48%, respectively). C. unicolor laccase did not need any mediators for removing the dyes. However, T. hirsuta laccase was only able to decolorize simulated Congo Red and RBBR dye baths (91 and 45%, respectively) in 19.5 h without mediators. When using mediators the decolorization capability was enhanced substantially, e.g. Poly R‐478 was decolorized by 78% in 25.5 h. On the whole, both laccases showed potential to be used in industrial applications.  相似文献   

2.
Initially sixteen fungi were screened for potential ligninolytic activity using decolourisation of a polymeric dye Poly R-478. From this, four fungi were selected, Trametes versicolor, Pleurotus ostreatus, Collybia sp., and an isolate (identified as Rhizoctonia solani) isolated from a grassland soil. Differences in the ligninolytic enzyme profiles of each of the fungi were observed. All of the four fungi tested produced MnP and laccase while the Collybia sp. and R. solani produced LiP in addition. Enzyme activity levels also varied greatly over the 21 days of testing with T. versicolor producing levels of MnP and laccase three to four times greater than the other fungi. The four fungi were then tested for their ability to colonise sand, peat (forest) and basalt and marl mixed till (field) soils through visual measurement and biomass detection in soil microcosms. Trametes versicolor and the Collybia sp. failed to grow in any of the non-sterilised soils whereas the R. solani and P. ostreatus isolates grew satisfactorily. Primers were␣designed to detect MnP and laccase genes in P.␣ostreatus and RTPCR was used to detect that these genes are expressed in forest and field soils.  相似文献   

3.
Summary This work represents the first report on the ability of autochthonous fungi from Tunisia to produce ligninolytic enzymes. Three hundred and fifteen fungal strains were isolated from different Tunisian biotopes. These fungal strains were firstly screened on solid media containing Poly R-478 or ABTS as indicator compounds that enabled the detection of lignin-modifying enzymes as specific color reactions. Of the 315 tested strains, 49 exhibited significant ABTS-oxidation activity expressed within the first week of incubation and only 18 strains decolorized the Poly R-478. Liquid cultivations and laccase, manganese peroxidase and lignin peroxidase activity assays of positive strains confirmed that eight efficient enzyme producers were found in the screening. These strains were attributed to the most closely related species using PCR amplification and sequencing of the internal transcribed spacer ‘ITS’ regions of the ribosomal DNA. The identification results showed fungal genera such as Oxyporus, Stereum and Trichoderma which have been only rarely reported as ligninolytic enzyme producers in the literature. Culture conditions and medium composition were optimized for the laccase producer Trametes trogii CTM 10156. This optimization resulted in high laccase production, 367 times more than in non-optimized conditions and which reached 110 U ml-1 within 15 days of incubation.  相似文献   

4.
A survey to isolate native white rot basidiomycetes from Northeast Mexico was conducted in the forests of the Sierra Madre Oriental in the state of Nuevo León. A total of 92 isolates from at least 20 different genera, were screened on Bran-Flakes solid plate cultures for the production of ligninolytic oxidases and/or peroxidases with guaiacol and o-anisidine as substrates; their lignin depolymerizing potential using the polymeric dye Poly R 478; their ability to decolorize anthraquinonic (Remazol Brilliant Blue Reactive), azo (Acid Red 44) and triphenylmethane (Crystal Violet) dyes. Among all fungi tested, 15 isolates showed extensive decolorization of the three dyes within a week and gave a positive reaction in guaiacol and o-anisidine tests. Nine of them were also efficient degraders of Poly R-478. Two isolates (CS5 and CU1) showed decolorization of all dyes within 5 days, comparing favorably with reference strains of P. chrysosporium, Pleurotus ostreatus, and Bjerkandera adusta. Decolorization was associated with laccase activity in both isolates and reached 90% or more for all dyes within 24 h in 8-day-old liquid cultures. The coupling of pairs 2,4-dichlorophenol + 4-aminoantipyrine and 3-dimethylaminobenzoic acid + 3-methyl-2-benzothiazolinone hydrazone, strongly suggest that the laccases of both strains correspond to those considered of high redox potential. These strains are considered good candidates for bioremediation of dye polluted effluents due to their ligninolytic potential and decolorizing performance.  相似文献   

5.
An anamorphic Bjerkandera adusta CCBAS 930 strain isolated from soil was found to decolorize two anthraquinonic dyes: Remazol Brilliant Blue R and Poly R-478. The reduction in the level of phenolic compounds in liquid B. adusta cultures containing RBBR and Poly R-478 was correlated with decolorization of studied dyes, which suggested their biodegradation. It was shown that this process was coupled with induction of secondary metabolism (idiophase) and peak peroxidase activity in culture medium, and the appearance of aerial mycelium. Decolorization of dyes depended on the presence of glucose (cometabolism).  相似文献   

6.
The little studied white rot fungus Ischnoderma resinosum was tested for its ability to decolorize seven different synthetic dyes. The strain efficiently decolorized Orange G, Amaranth, Remazol Brilliant Blue R, Cu-phthalocyanin and Poly R-478 on agar plates and in liquid culture at a relatively high concentration of 2–4 and 0.5–1 g l−1, respectively. Malachite Green and Crystal Violet were decolorized to a lower extent up to the concentration of 0.1 g l−1. Decolorization capacity of I. resinosum was higher than that in Phanerochaete chrysosporium, Pleurotus ostreatus or Trametes versicolor. In contrast with these thoroughly examined fungi, I. resinosum was able to degrade a wide spectrum of chemically and structurally different synthetic dyes. I. resinosum also efficiently decolorized dye mixtures. In liquid culture, Orange G and Remazol Brilliant Blue R were decolorized most rapidly; the process was not affected by different nitrogen content in the media. Shaken cultivation strongly inhibited the decolorization of Orange G.  相似文献   

7.
In this paper, the in vivo decolourization of the polymeric dye Poly R‐478 by semi‐solid‐state cultures of Phanerochaete chrysosporium BKM‐F‐1767 (ATCC 24725) was investigated, employing corncob as a support. In order to stimulate the ligninolytic system of the fungus, the cultures were supplemented with veratryl alcohol (2 mM) or manganese (IV) oxide (1 g/l). Maximum manganese‐dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of around 2,000 U/l and 400 U/l were attained by the former, whereas the activities reached by the latter were of about 1,500 U/l and 200 U/l, respectively. Furthermore, laccase activity (around 150 U/l) was only detected in manganese (IV) oxide supplemented cultures. The polymeric dye Poly R‐478 (0.02 w/v) was added to three‐day‐old cultures. A percentage of biological decolourization of about 85% was achieved using cultures supplemented with veratryl alcohol, whereas MnO2 cultures showed a rather lower percentage of around 58% after nine days of dye incubation. Moreover, a correlation between MnP activity and Poly R‐478 decolourization could be observed, indicating that this enzyme is mainly responsible for dye degradation. In the present work, the in vivo decolourizing capability of the ligninolytic complex secreted by P. chrysosporium was investigated under the above‐mentioned cultivation conditions, employing a model compound, such as the polymeric dye Poly R‐478.  相似文献   

8.
The marine cyanobacterium Phormidium valderianum BDU140441 was tested for its capability of decolorizing Poly R-478 in the presence of copper. The rate of dye decolorization was decreased when the concentration of copper was increased in the medium, whereas copper in low amount (10 μM) enhanced the decolorization. To analyse the fate of dye-decolorizing and stress-stabilizing enzymes upon copper and dye exposure, four different conditions were maintained. The conditions were (A) only the organism P. valderianum BDU140441, (B) organism + Poly R-478 (0.0075%), (C) organism + copper (10 μM) and (D) organism + Poly R-478 (0.0075%) + copper (10 μM). After 16 h of exposure to Poly R-478 and copper, an increased trend in the activity of laccase and peroxidase was observed. In contrast, polyphenol oxidase revealed only a mild increase in activity along with the induction of a new isoform. The tested cellular antioxidants carotenoid and reduced glutathione were found to be reduced in varying percentage in accordance to the degree of stress bared by the cyanobacterium. Dye and copper exposure divulged an increased pattern in the production of reactive oxygen species (ROS). Concomitant with ROS, esterase activity was also found to increase. Towards copper and dye exposure, the activity of the primary stress-stabilizing enzymes catalase and superoxide dismutase were found to be increased in varied degrees. Upon copper exposure glutathione S-transferase and glutathione peroxidase expressed new isoforms. The results suggest that copper at this juncture played a role as inducer for dye-decolorizing copper oxidases and subjugated the antioxidant system to the objective of Poly R-478 decolorization.  相似文献   

9.
White rot fungi were collected from Chirinda and Chimanimani hardwood forests in Zimbabwe and studied with respect to growth temperature optima and dye decolorization. Temperature optima were found to vary (between 25-37 degrees C) amongst the isolates. The isolates were screened for their ability to degrade the polymeric dyes; blue dextran and Poly R478 and the triphenylmethane dyes; cresol red, crystal violet and bromophenol blue. Semi-quantitative determination of the hydrolytic enzyme activities possessed by the white rot fungi was determined using the API ZYM system. Lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase activities in the fungi were also determined. No LiP was detected in any of the isolates but all isolates showed manganese peroxidase and laccase activities. Time related decolorization studies and optimum pH determinations for Poly R478 degradation by the isolates were carried out in liquid cultures. The most significant rates of Poly R478 decolorization in liquid cultures were found with the following isolates: Trametes cingulata, Trametes versicolor, Trametes pocas, DSPM95 (a species to be identified), Datronia concentrica and Pycnoporus sanguineus.  相似文献   

10.
Ligninolytic enzyme production by the white-rot fungi Phanerochaete chrysosporium and Trametes versicolor precultivated with different insoluble lignocellulosic materials (grape seeds, barley bran and wood shavings) was investigated. Cultures of Phanerochaete chrysosporium precultivated with grape seeds and barley bran showed maximum lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) activities (1000 and 1232 U/l, respectively). Trametes versicolor precultivated with the same lignocellulosic residues showed the maximum laccase activity (around 250 U/l). For both fungi, the ligninolytic activities were about two-fold higher than those attained in the control cultures. In vitro decolorization of the polymeric dye Poly R-478 by the extracellular liquid obtained in the above-mentioned cultures was monitored in order to determine the respective capabilities of laccase, LiP and MnP. It is noteworthy that the degrading capability of LiP when P. chrysosporium was precultivated with barley bran gave a percentage of Poly R-478 decolorization of about 80% in 100 s, whereas control cultures showed a lower percentage, around 20%, after 2 min of the decolorization reaction.  相似文献   

11.
The various marine cyanobacterial strains tested showed wide variation in growth patterns and decolourization patterns of the lignin model polymeric dye Poly R-478. The study revealed the presence of laccases (LACs) and polyphenol oxidases (PPOs) in marine cyanobacteria. All the ten tested strains were found to possess constitutive PPOs, whereas only four strains showed the presence of constitutive laccases. Within 7 days of incubation the highest percentage of decolourization was shown by Phormidium valderianum BDU140441 (65%), and Oscillatoria chlorina BDU 140691 (12%) showed the least. Isoforms of LACs were found to be induced by the laccase elicitors veratryl aldehyde, caffeic acid, guaiacol and tannic acid. Cyanobacterial strains that possess both LACs and PPOs were relatively more efficient in decolourizing the dye. Altering the concentrations of nitrogen, phosphorus, potassium and sulphur from the basal medium influenced the efficiency of dye decolourization.  相似文献   

12.
Twelve white-rot fungal strains belonging to seven different species were screened on plates under alkaline condition to study the decolourisation of the textile dyes Reactive Black 5 and Poly R-478. Three strains of Trametes versicolor (Micoteca da Universidade do Minho (MUM) 94.04, 04.100 and 04.101) and one strain of Phanerochaete chrysosporium (MUM 94.15) showed better decolourisation results. These four strains were used for decolourisation studies in liquid culture medium. All four selected strains presented more efficient decolourisation rates on Reactive Black 5 than on Poly R-478. For both dyes on solid and liquid culture media, the decolourisation capability exhibited by these strains depended on dye concentration and pH values of the media. Finally, the decolourisation of Reactive Black 5 by T. versicolor strains MUM 94.04 and 04.100 reached 100 %. In addition, the highest white-rot fungi ligninolytic enzyme activities were found for these two strains.  相似文献   

13.
The decolorizing capacity of 26 white rot fungi from Argentina was investigated. Extracellular production of ligninolytic enzymes by mycelium growing on solid malt extract/glucose medium supplemented with different dyes (Malachite Green, Azure B, Poly R-478, Anthraquinone Blue, Congo Red and Xylidine), dye decolorization and the relationship between these two processes were studied. Only ten strains decolorized all the dyes, all ten strains produced laccase, lignin peroxidase and manganese peroxidase on solid medium. However, six of the strains could not decolorize any of the dyes; all six strains tested negative for lignin peroxidase, and produced less than 0.05 U/g agar of manganese peroxidase. Comparing the isolates with the well-known dye-degrader Phanerochaete chrysosporium, a new fungus was identified: Coriolus versicolor f. antarcticus, potentially a candidate for use in biodecoloration processes. Eighteen day-old cultures of this fungus were able to decolorize in an hour 28%, 30%, 43%, 88% and 98% of Xylidine (24 mg/l), Poly R-478 (75 mg/l), Remazol Brilliant Blue R (9 mg/l), Malachite Green (6 mg/l) and Indigo Carmine (23 mg/l), respectively. Laccase activity was 0.13 U/ml, but neither lignin peroxidase nor manganese peroxidase were detected in the extracellular fluids for that day of incubation.  相似文献   

14.
A recently isolated white-rot strain, Bjerkandera sp. strain BOS55, displays high extracellular peroxidase activity, and rapidly degrades polycyclic aromatic hydrocarbons (PAH). In this study, the culture conditions for the biodegradation of the model PAH compound, anthracene, were optimized with respect to O2, N, and C. An additional objective was to determine if the decolorization of the polymeric ligninolytic indicator dye, Poly R-478, could be correlated to anthracene biodegradation observed under a wide range of culture conditions. The supply of O2 was found to be the most important parameter in the biodegradation of anthracene. Increasing culture aeration enhanced the biodegradation of anthracene and the accumulation of its peroxidase-mediated oxidation product anthraquinone. Decolorization of Poly R-478 was less affected by inadequate aeration. Provided that ample aeration was supplied, the degradation of anthracene under different culture conditions was strongly correlated with the ligninolytic activity as indicated by the rate of Poly R-478 decolorization. Concentrations up to 22 mM NH4 + N did not repress anthracene biodegradation and only caused a 0%–40% repression of the Poly R-478 decolorizing activity in various experiments. A cosubstrate requirement of 100 mg glucose / mg anthracene biodegraded was observed in this study.  相似文献   

15.
《Process Biochemistry》1999,34(1):31-37
A novel polymeric dye-degrading fungal strain ATCC 74414 was isolated. Taxonomic identification including morphological and cultural characterization indicated that this isolate was a strain of Penicillium. Strain ATCC 74414 aerobically decolorized both Poly R-478 and Poly S-119 in liquid media containing 0.01% of polymeric dyes. The decolorization rate was examined in three distinct liquid media: Schenk and Hildebrandt-K2SO4 medium (SHK), potato dextrose broth (PDB), and half Murashige-Skoog medium (HMS). Strain ATCC 74414 rapidly decolorized R-478 in SHK medium but the color was subsequently released from the mycelial mass into the medium after 2–3 days, indicating that the decolorization in SHK medium could be due to adsorption of Poly R-478 by the mycelia. In contrast, in HMS and PDB media ATCC 74414 decolorized Poly R-478 more steadily, and the dye was initially adsorbed onto the mycelia and was subsequently decolorized without being released into the medium. Strain ATCC 74414 also decolorized Poly S-119 steadily in SHK, HMS and PDB media. It appears that the decolorization process involved initial mycelial adsorption of dye compounds, which was probably followed by biodegradation through microbial metabolism, and the decolorization may be affected by medium constituents. Although aerobic decolorization may not necessarily lead to complete mineralization of dyes, these results have suggested the potential of strain ATCC 74414 in bioremediation of dye-contaminated water and soil.  相似文献   

16.
We report the fruiting-body formation and cultivation properties of Asterophora lycoperdoides, a fungicolous fungus. Asterophora lycoperdoides formed fruiting bodies on potato dextrose agar medium in approximately 1 week, although this fungus shows high host specificity to Russula nigricans in nature. Optimal temperature of mycelial growth and fruiting-body formation was 25°C. Mannitol or soluble starch was preferably used as a carbon source, and amino nitrogen was preferably used as the nitrogen source. For a better understanding of the relationship between A. lycoperdoides and R. nigricans, we cultivated A. lycoperdoides on media supplemented with freeze-dried fruiting bodies of various fungi. The germination rate was approximately 2.5 times higher on the medium containing freeze-dried R. nigricans than that on the PDA medium. The mycelia extended most rapidly in the presence of R. nigricans. Furthermore, the stipe length of its fruiting body was the longest on the medium containing R. nigricans. These results indicated that A. lycoperdoides can grow faster by utilizing certain substances that are abundantly contained in R. nigricans, such as mannitol, or by utilizing R. nigricans itself. It is considered that the constituents of R. nigricans might contribute to the host specificity of A. lycoperdoides.  相似文献   

17.
Luz C  Netto MC  Rocha LF 《Mycopathologia》2007,164(1):39-47
The effect of five fungicides, benomyl (1 mg/l), dodine (50 mg/l), manzate (100 mg/l), cupric sulphate (200 mg/l) and thiabendazole (4 mg/l) was tested under in␣vitro conditions on development of 15 isolates of fungi pathogenic for insects and␣other invertebrates (Beauveria brongniartii, Culicinomyces clavisporus, Duddingtonia flagrans, Hirsutella thompsonii, two Metarhizium anisopliae, Nomuraea rileyi, two Isaria/Paecilomyces spp., and Sporothrix insectorum) and 13 isolates of contaminant fungi (five Aspergillus spp., Cladosporium cladosporioides, Cunninghamella echinulata, Fusarium roseum, Gliocladium sp., Mortierella isabellina, Mucor plumbeus, Rhizopus arrhizus and Trichothecium roseum) originating mostly from tree-hole breeding sites of mosquitoes. Most pathogenic and contaminant fungi had clear patterns of susceptibility or resistance to tested concentration of the fungicide. Development of both pathogenic and contaminant fungi on fungicide-supplemented medium varied among fungi and fungicides tested. Minimal inhibition of pathogenic fungi was found for cupric sulphate, benomyl, dodine, thiabendazole < manzate. The highest inhibition of contaminants was obtained with thiabendazole > benomyl and dodine > manzate and cupric sulphate. Thiabendazole was the most appropriate fungicide to isolate fungi pathogenic to invertebrates from substrates with high water contents and rich in organic material. The results underline the importance of adapting both a fungicide and its concentration for a selective medium for isolating specific target fungi and while selecting against possible contaminants.  相似文献   

18.
Removal of PCBs by various white rot fungi in liquid cultures   总被引:1,自引:0,他引:1  
The ability ofPhanerochœte chrysosporium, Trametes versicolor, Coriolopsis polyzona, andPleurotus ostreatus growing in a nitrogen-limited mineral medium (NMM) to degrade PCBs in a commercial, Delor 106 mixture at a concentration of 0.9 ppm was compared. The respective amounts of PCBs removed from the fungal cultures within 3 weeks were 25, 50, 41, and 0%. The capacities of the individual fungal species to remove PCBs correlated to some extent with their capabilities of decolorization of NMM agar containing both Poly R-478 or Remazol Brilliant Blue R dyes. Enzyme estimations indicated that both high and relatively stable activities of Mn-dependent peroxidase, Mn-independent peroxidase, lignin peroxidase, and laccase characterized efficient PCB degraders. The work was supported by a grant of theAcademy of Sciences of the Zech Republic no. A6301501 and a grant of theAgency of the Zech Republic no. 204/94/1190.  相似文献   

19.
The ability of a Brazilian strain ofPleurotus pulmonarius to decolorize structurally different synthetic dyes (including azo, triphenylmethane, heterocyclic and polymeric dyes) was investigated in solid and submerged cultures. Both were able to decolorize completely or partially 8 of 10 dyes (Amido Black, Congo Red, Trypan Blue, Methyl Green, Remazol Brilliant Blue R, Methyl Violet, Ethyl Violet, Brilliant Cresyl Blue). No decolorization of Methylene Blue and Poly R 478 was observed. Of the four phenol-oxidizing enzymes tested in culture filtrates (lignin peroxidase, manganese peroxidase, aryl alcohol oxidase, laccase),P. pulmonarius produced only laccase. Both laccase activity and dye decolorization were related to glucose and ammonium starvation or to induction by ferulic acid. The decolorizationin vivo was tested using three dyes — Remazol Brilliant Blue R, Trypan Blue and Methyl Green. All of them were completely decolorized by crude extracellular extracts. Decolorization and laccase activity were equally affected by pH and temperature. Laccase can thus be considered to be the major enzyme involved in the ability ofP. pulmonarius to decolorize industrial dyes.  相似文献   

20.
Screening for fungi capable of removing benzo[a]pyrene in culture   总被引:3,自引:0,他引:3  
Some 17 strains of filamentous fungi, encompassing 13 different species, were tested for their ability to decolorize the polymeric dye R-478. Decolorization was observed with both living and dead mycelia of the three Aspergillus species tested, indicating bioadsorption, not biodegradation. With mycelia of other strains tested, the most decolorization was obtained with Marasmiellus troyanus, Pleurotus sapidus, and Pleurotus ostreatus; with extracellular filtrates, the most decolorization was observed with Laetiporus sulphureus. Parallel experiments incubating benzo[a]pyrene (B[a]P) with mycelia and filtrates showed that six of the species removed over 40% of B[a]P in comparison with HgCl2-killed controls. The highest B[a]P removal by mycelia was shown by M. troyanus (95.0%); the highest level by extracellular filtrates was shown by Hericium erinaceous (44.8%). With the exception of A. ochraceous, no products of B[a]P metabolism were detected for any of the species tested. For most species, the disappearance of B[a]P was correlated with the ability to decolorize poly R-478 ( r = 0.78 for mycelia; r = 0.74 for culture fluids). M. troyanus gave rise to more disappearance than decolorization. The removal of B[a]P by M. troyanus and Phanerochaete chrysosporium was compared over 30 days: M. troyanus gave significantly better removal in a biphasic pattern. Received: 8 July 1996 / Received revision: 11 November 1996 / Accepted: 29 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号