首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tang X  Gomes A  Bhatia A  Woodson WR 《The Plant cell》1994,6(9):1227-1239
The differential expression of the petunia 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene family during flower development and senescence was investigated. ACC oxidase catalyzes the conversion of ACC to ethylene. The increase in ethylene production by petunia corollas during senescence was preceded by increased ACC oxidase mRNA and enzyme activity. Treatment of flowers with ethylene led to an increase in ethylene production, ACC oxidase mRNA, and ACC oxidase activity in corollas. In contrast, leaves did not exhibit increased ethylene production or ACC oxidase expression in response to ethylene. Gene-specific probes revealed that the ACO1 gene was expressed specifically in senescing corollas and in other floral organs following exposure to ethylene. The ACO3 and ACO4 genes were specifically expressed in developing pistil tissue. In situ hybridization experiments revealed that ACC oxidase mRNAs were specifically localized to the secretory cells of the stigma and the connective tissue of the receptacle, including the nectaries. Treatment of flower buds with ethylene led to patterns of ACC oxidase gene expression spatially distinct from the patterns observed during development. The timing and tissue specificity of ACC oxidase expression during pistil development were paralleled by physiological processes associated with reproduction, including nectar secretion, accumulation of stigmatic exudate, and development of the self-incompatible response.  相似文献   

2.
3.
4.
5.
Pan G  Lou C 《Journal of plant physiology》2008,165(11):1204-1213
Mulberry (Morus alba) is an important crop tree involved in sericulture and pharmaceuticals. To further understand the development and the environmental adaptability mechanism of mulberry, a cDNA of the gene MaACO1 encoding 1-aminocyclopropane-1-carboxylate oxidase was isolated from mulberry. This was used to investigate stress-responsive expression in mulberry. Developmental expression of ACC oxidase in mulberry leaves and spatial expression in mulberry flowers were also investigated. Damage and low-temperature treatment promoted the expression of MaACO1 in mulberry. In leaves, expression of the MaACO1 gene increased in cotyledons and the lowest leaves with leaf development, but showed reduced levels in emerging leaves. In flowers, the pollinated stigma showed the highest expression level, followed by the unpollinated stigma, ovary, and immature flowers. These results suggest that high MaACO1 expression may be predominantly associated with tissue aging or senescence in mulberry.  相似文献   

6.
The temporal and spatial expression of one member of the Arabidopsis 1-aminocyclopropane-1-carboxylate (ACC) synthase gene family (ACS1) was analyzed using a promoter-[beta]-glucuronidase fusion. The expression of ACS1 is under developmental control both in shoot and root. High expression was observed in young tissues and was switched off in mature tissues. ACS1 promoter activity was strongly correlated with lateral root formation. Dark-grown seedlings exhibited a different expression pattern from light-grown ones. The ACC content and the in vivo activity of ACC oxidase were determined. ACC content correlated with ACS1 gene activity. ACC oxidase activity was demonstrated in young Arabidopsis seedlings. Thus, the ACC formed can be converted into ethylene. In addition, ethylene production of immature leaves was fourfold higher compared to that of mature leaves. The possible involvement of ACS1 in influencing plant growth and development is discussed.  相似文献   

7.
8.
Enzyme activities of tobacco leaves were compared in detergent extracts. Highest levels of chlorogenic acid oxidase, malate-NAD oxidoreductase, and acid phosphatase were obtained from bud tissues. Peroxidase activity was least in young leaves and highest in senescent leaves yellowed with Ethrel. Peroxidase zymograms obtained by means of disc electrophoresis showed differences in isozyme composition among all five samples examined. Although protease was found in material extracted from buds, upper, middle, and lower leaf positions, none could be demonstrated in Ethrel-treated mature leaves.  相似文献   

9.
delta-Tocopherylquinone (deltaTQ) content was determined in tobacco and yellow maple leaves, green ivy leaves and cactus tissues. It was found that the concentration of delta-TQ was highest in mature or senescent tissues, such as white tobacco leaves (0.02 mumole/g dry wt) while its detection was uncertain in young, green leaves from the apex of tobacco plants. Fractionation by centrifugation of senescent tobacco leaves showed that the osmiophilic globule fraction was enriched in delta-TQ. Electron microscope studies of young, mature and senescent tobacco tissues showed progressive changes in the size and number of osmiophilic globules. After chloroplast breakdown in senescent tobacco leaves, these globules became the predominant constituents of the organelle. delta-TQ which is associated with osmiophilic globules may play a role in the development of plants, particularly during senescence.  相似文献   

10.
Two polyphenol oxidase isoforms with distinct expression patterns were identified in hybrid poplar (Populus trichocarpaxP. deltoides). PPO-1, corresponding to the previously cloned PtdPPO (Constabel et al., Plant Physiol. 124: 285-295) was primarily leaf tissue-specific and detected only after wounding. PPO-2 was expressed constitutively in all tissue types tested except mature leaves, with highest expression in very young leaves and conducting tissues such as roots, stems and petioles. These two PPO isoforms were partially purified from hybrid poplar by ammonium sulfate fractionation followed by hydrophobic interaction chromatography. They were found to differ in stability, pH optimum, and activation by SDS. Tests with common phenolic substrates showed that PPO-1 had a broader substrate specificity than PPO-2. The distinct enzymatic properties and expression patterns of these two PPO isoforms suggest that they may have different physiological functions in hybrid poplar.  相似文献   

11.
Leaf senescence is the orderly dismantling of older tissue that allows recycling of nutrients to developing portions of the plant and is accompanied by major changes in gene expression. Histone modifications correlate to levels of gene expression, and this study utilizes ChIP-seq to classify activating H3K4me3 and silencing H3K27me3 marks on a genome-wide scale for soil-grown mature and naturally senescent Arabidopsis leaves. ChIPnorm was used to normalize data sets and identify genomic regions with significant differences in the two histone methylation patterns, and the differences were correlated to changes in gene expression. Genes that showed an increase in the H3K4me3 mark in older leaves were senescence up-regulated, while genes that showed a decrease in the H3K4me3 mark in the older leaves were senescence down-regulated. For the H3K27me3 modification, genes that lost the H3K27me3 mark in older tissue were senescence up-regulated. Only a small number of genes gained the H3K27me3 mark, and these were senescence down-regulated. Approximately 50% of senescence up-regulated genes lacked the H3K4me3 mark in both mature and senescent leaf tissue. Two of these genes, SAG12 and At1g73220, display strong senescence up-regulation without the activating H3K4me3 histone modification. This study provides an initial epigenetic framework for the developmental transition into senescence.  相似文献   

12.
13.
A non-yellowing mutant of Phaseolus vulgaris L. was used toinvestigate factors involved in chlorophyll breakdown duringfoliar senescence. The mutant showed physiological changes similarto those of the normal yellowing type during senescence exceptthat leaf chlorophyll did not decline. Transmission electronmicroscope studies did not reveal appreciable differences inchloroplast ultrastructure between the two genotypes, suggestingthat chloroplast membrane integrity was not the factor preventingchlorophyll degradation in the mutant. However, the lack ofplastoglobuli in senescent mutant chloroplasts suggested thatthe lipid environment may be different from that of senescentnormal chloroplasts. Banding patterns of total soluble protein,resolved by sodium dodecyl sulphate-poly aery lamide gel electrophoresisshowed few, if any, differences between mature non-senescentnormal and mutant leaves; however, bands at 14 kD and 58 kDdiminished in senescent normal leaves, but remained in senescentmutant non-yellowing leaves. Key words: Non-yellowing mutant, Phaseolus vulgaris, senescence, chlorophyll degradation  相似文献   

14.
Rita Barr  C. J. Arntzen 《Plant physiology》1969,44(4):591-593,595,597-598
δ-Tocopherylquinone (δTQ) content was determined in tobacco and yellow maple leaves, green ivy leaves and cactus tissues. It was found that the concentration of δ-TQ was highest in mature or senescent tissues, such as white tobacco leaves (0.02 μmole/g dry wt) while its detection was uncertain in young, green leaves from the apex of tobacco plants. Fractionation by centrifugation of senescent tobacco leaves showed that the osmiophilic globule fraction was enriched in δ-TQ. Electron microscope studies of young, mature and senescent tobacco tissues showed progressive changes in the size and number of osmiophilic globules. After chloroplast breakdown in senescent tobacco leaves, these globules became the predominant constituents of the organelle. δ-TQ which is associated with osmiophilic globules may play a role in the development of plants, particularly during senescence.  相似文献   

15.
16.
17.
Physiological and ecological characteristics of sun and shade leaves have been compared in detail, but their developmental processes, in particular their light sensory mechanisms, are still unknown. This study compares the development of sun and shade leaves of Chenopodium album L., paying special attention to the light sensory site. We hypothesized that mature leaves sense the light environment, and that this information determines anatomy of new leaves. To examine this hypothesis, we shaded plants partially. In the low-light apex treatment (LA), the shoot apex with developing leaves was covered by a cap made of a shading screen and received photosynthetically active photon flux density (PPFD) of 60 micromol m(-2 )s(-1), while the remaining mature leaves were exposed to 360 micromol m(-2 )s(-1). In the high-light apex treatment (HA), the apex was exposed while the mature leaves were covered by a shade screen. After these treatments for 6 d, we analyzed leaf anatomy and chloroplast ultrastructure. The anatomy of LA leaves with a two-layered palisade tissue was similar to that of sun leaves, while their chloroplasts were shade-type with thick grana. The anatomy of HA leaves and shade leaves was similar and both had one-layered palisade tissue, while chloroplasts of HA leaves were sun-type having thin grana. These results clearly demonstrate that new leaves differentiate depending on the light environment of mature leaves, while chloroplasts differentiate depending on the local light environment.  相似文献   

18.
We investigated the distribution patterns of senescent and green leaf litter patches on a streambed to evaluate the hypothesis that the different immersion times of senescent leaves in long-term benthic storage and newly retained green leaves affect streambed distribution patterns in summer (June, July, and August). We counted all the leaf litter patches in the streambed of the study reach, comparing the physical condition of patches and classifying the trapping obstacles associated with each patch type. The distribution patterns of senescent and green leaf litter patches differed. Green leaf litter patches were more numerous at every sampling date, with most trapped by cobbles, whereas senescent leaf litter patches were retained by twig obstacles, backwaters, and cobbles. In June and July, senescent leaf litter patches were located in significantly deeper stream areas than were green leaf litter patches. The distribution of senescent leaves would be primarily determined during spring snowmelt-driven floods. We speculate that senescent leaves were originally located at the edges of pools in the main flow pathway of the channel, which overflowed in the floods. We conducted flume experiments to clarify the transport characteristics of senescent and green painted maple and manchurian alder leaves in the water column. Our hypothesis was that the transport characteristics of each leaf type differ when they first enter the water, because of differing leaf properties. The flume experiments showed that duration of surface flotation differed for senescent and green leaves and for the two tree species. These differences in the duration of leaves on the streambed and in the floating time of green leaves of different trees ensure varied food resources for macroinvertebrates in various physical conditions. Handling editor: B. Oertli  相似文献   

19.
20.
1. Freshly fallen green leaves and flowers of terrestrial plants enter temperate streams in spring and summer, when senescent leaf litter is often scarce. These resources appear to provide good supplementary food for macroinvertebrate shredders, but have some potential shortcomings as food or case material for caddisflies. 2. To compare suitability of green leaves or flowers and senescent leaves for the growth and development of stream shredders, we reared the caddisfly Lepidostoma complicatum in the laboratory with treatments that provided larvae with senescent (oak) and green (oak or maple) leaves separately, and also together, in case the combined use of both types of leaf may benefit the shredder. 3. Larvae supplied with green leaves alone grew at 65% of the rate of those provided with senescent leaves alone, due to their lower consumption rate. No individuals given green leaves alone developed into adults, whereas 70% of the individuals given senescent leaves alone did. Green leaves may inhibit larval consumption due to their high phenol content, or they may be unsuitable for case material because they are less tough than senescent leaves. 4. Larvae supplied with both senescent and green leaves (or flowers) had a higher growth rate and developed faster, than those given senescent leaves alone, whereas the proportions of successfully emerged individuals did not differ. Lepidostoma probably benefits from the higher nitrogen content of the green leaves when used together with senescent leaves. 5. These results suggest that green leaves (or flowers) cannot serve as an alternative food resource to senescent leaves, but that they can enhance the growth and development of a Lepidostoma stream shredder if senescent leaves are also available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号